|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Endometriosis" |
|
cohort = "GSE75427" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Endometriosis" |
|
in_cohort_dir = "../DATA/GEO/Endometriosis/GSE75427" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Endometriosis/GSE75427.csv" |
|
out_gene_data_file = "./output/preprocess/1/Endometriosis/gene_data/GSE75427.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Endometriosis/clinical_data/GSE75427.csv" |
|
json_path = "./output/preprocess/1/Endometriosis/cohort_info.json" |
|
|
|
|
|
from tools.preprocess import * |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("Sample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trait_row = None |
|
age_row = 2 |
|
gender_row = None |
|
|
|
|
|
|
|
def convert_trait(x: str): |
|
""" |
|
Convert a raw trait value to a binary representation (0 or 1), or None if unknown. |
|
However, since trait_row is None, this function will not be used here. |
|
""" |
|
|
|
return None |
|
|
|
def convert_age(x: str): |
|
""" |
|
Convert a string like 'age: 37y' to a continuous numeric value (e.g., 37). |
|
Return None if parsing fails. |
|
""" |
|
|
|
parts = x.split(':') |
|
if len(parts) < 2: |
|
return None |
|
val = parts[1].strip() |
|
val = val.replace('y', '').strip() |
|
try: |
|
return float(val) |
|
except ValueError: |
|
return None |
|
|
|
def convert_gender(x: str): |
|
""" |
|
Convert a raw gender value to binary (female=0, male=1). Return None if unknown. |
|
However, since gender_row is None, this function will not be used here. |
|
""" |
|
|
|
return None |
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
|
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
|
|
requires_gene_mapping = True |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print( |
|
"Warning: No column in gene_annotation matches the 'A_19_P...' probe IDs. " |
|
"Mapping will likely result in an empty gene expression DataFrame." |
|
) |
|
|
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL') |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
|
|
|
|
print("Resulting gene_data shape after mapping:", gene_data.shape) |
|
import os |
|
|
|
|
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
print("Normalized gene expression data saved to:", out_gene_data_file) |
|
|
|
|
|
if not os.path.exists(out_clinical_data_file): |
|
print("No clinical data file found. Trait is likely unavailable; skipping linking and final data steps.") |
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False |
|
) |
|
print("Dataset is not usable or missing trait data. No final data saved.") |
|
else: |
|
|
|
selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0) |
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) |
|
|
|
|
|
df = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, df = judge_and_remove_biased_features(df, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=df, |
|
note="Final step with linking, missing-value handling, bias checks." |
|
) |
|
|
|
|
|
if is_usable: |
|
df.to_csv(out_data_file) |
|
print(f"Final linked data saved to: {out_data_file}") |
|
else: |
|
print("Dataset is not usable or severely biased. No final data saved.") |