|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Endometriosis" |
|
|
|
|
|
tcga_root_dir = "../DATA/TCGA" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Endometriosis/TCGA.csv" |
|
out_gene_data_file = "./output/preprocess/1/Endometriosis/gene_data/TCGA.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Endometriosis/clinical_data/TCGA.csv" |
|
json_path = "./output/preprocess/1/Endometriosis/cohort_info.json" |
|
|
|
import os |
|
|
|
|
|
subdirs = [ |
|
'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', |
|
'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)', |
|
'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)', |
|
'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', |
|
'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)', |
|
'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', |
|
'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)', |
|
'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', |
|
'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', |
|
'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)', |
|
'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)', |
|
'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)', |
|
'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)' |
|
] |
|
|
|
suitable_subdir = None |
|
synonyms = ["endometriosis", "endometrioid"] |
|
|
|
for sd in subdirs: |
|
if any(term in sd.lower() for term in synonyms): |
|
suitable_subdir = sd |
|
break |
|
|
|
if not suitable_subdir: |
|
print(f"No suitable subdirectory found for trait '{trait}'. Skipping this trait.") |
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort="TCGA", |
|
info_path=json_path, |
|
is_gene_available=False, |
|
is_trait_available=False |
|
) |
|
else: |
|
|
|
clinical_path, genetic_path = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, suitable_subdir)) |
|
|
|
|
|
clinical_df = pd.read_csv(clinical_path, index_col=0, sep='\t') |
|
genetic_df = pd.read_csv(genetic_path, index_col=0, sep='\t') |
|
|
|
|
|
print("Clinical Data Columns:", clinical_df.columns.tolist()) |
|
|
|
candidate_age_cols = ["age_at_initial_pathologic_diagnosis", "days_to_birth"] |
|
candidate_gender_cols = ["gender"] |
|
|
|
|
|
extracted_cols = candidate_age_cols + candidate_gender_cols |
|
if extracted_cols: |
|
extracted_data = clinical_df[extracted_cols] |
|
preview_dict = preview_df(extracted_data, n=5) |
|
print(preview_dict) |
|
|
|
age_col = "age_at_initial_pathologic_diagnosis" |
|
gender_col = "gender" |
|
|
|
|
|
print("Chosen age column:", age_col) |
|
print("Chosen gender column:", gender_col) |
|
|
|
selected_clinical_df = tcga_select_clinical_features( |
|
clinical_df=clinical_df, |
|
trait=trait, |
|
age_col=age_col, |
|
gender_col=gender_col |
|
) |
|
|
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
|
|
gene_expression_norm = normalize_gene_symbols_in_index(genetic_df) |
|
gene_expression_norm.to_csv(out_gene_data_file) |
|
|
|
|
|
|
|
|
|
linked_data = selected_clinical_df.join(gene_expression_norm.T, how='inner') |
|
|
|
|
|
processed_linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, processed_linked_data = judge_and_remove_biased_features(processed_linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort="TCGA", |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=processed_linked_data, |
|
note="" |
|
) |
|
|
|
|
|
if is_usable: |
|
processed_linked_data.to_csv(out_data_file) |