|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Epilepsy" |
|
cohort = "GSE199759" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Epilepsy" |
|
in_cohort_dir = "../DATA/GEO/Epilepsy/GSE199759" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Epilepsy/GSE199759.csv" |
|
out_gene_data_file = "./output/preprocess/1/Epilepsy/gene_data/GSE199759.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Epilepsy/clinical_data/GSE199759.csv" |
|
json_path = "./output/preprocess/1/Epilepsy/cohort_info.json" |
|
|
|
|
|
from tools.preprocess import * |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("Sample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trait_row = None |
|
age_row = 2 |
|
gender_row = 1 |
|
|
|
|
|
def convert_trait(x: str): |
|
|
|
return None |
|
|
|
def convert_age(x: str): |
|
|
|
parts = x.split(":") |
|
if len(parts) < 2: |
|
return None |
|
val = parts[1].strip().replace('y', '').strip() |
|
try: |
|
return float(val) |
|
except ValueError: |
|
return None |
|
|
|
def convert_gender(x: str): |
|
|
|
parts = x.split(":") |
|
if len(parts) < 2: |
|
return None |
|
val = parts[1].strip().lower() |
|
if val == 'male': |
|
return 1 |
|
elif val == 'female': |
|
return 0 |
|
return None |
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
|
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
print("These identifiers appear to be Agilent microarray probe IDs, not standard human gene symbols.") |
|
print("requires_gene_mapping = True") |
|
|
|
import pandas as pd |
|
import io |
|
|
|
|
|
annotation_text, _ = filter_content_by_prefix( |
|
source=soft_file, |
|
prefixes_a=['^', '!', '#'], |
|
unselect=True, |
|
source_type='file', |
|
return_df_a=False, |
|
return_df_b=False |
|
) |
|
|
|
|
|
gene_annotation = pd.read_csv( |
|
io.StringIO(annotation_text), |
|
delimiter='\t', |
|
on_bad_lines='skip', |
|
engine='python' |
|
) |
|
|
|
print("Gene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
probe_col = "ID" |
|
symbol_col = "miRNA_ID" |
|
|
|
|
|
mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col=probe_col, gene_col=symbol_col) |
|
|
|
|
|
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df) |
|
|
|
|
|
print("Preview of mapped gene expression data:") |
|
print(gene_data.head()) |
|
import os |
|
import pandas as pd |
|
|
|
|
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
if os.path.exists(out_clinical_data_file): |
|
|
|
|
|
selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0) |
|
selected_clinical_df.index = [trait] |
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) |
|
|
|
|
|
final_data = handle_missing_values(linked_data, trait_col=trait) |
|
|
|
|
|
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=final_data, |
|
note="Trait data successfully extracted; row index fixed at Step 7." |
|
) |
|
|
|
|
|
if is_usable: |
|
final_data.to_csv(out_data_file) |
|
else: |
|
|
|
empty_df = pd.DataFrame() |
|
validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=True, |
|
df=empty_df, |
|
note="No trait data was found; linking and final dataset output are skipped." |
|
) |