|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Acute_Myeloid_Leukemia" |
|
cohort = "GSE222169" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia" |
|
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE222169" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE222169.csv" |
|
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE222169.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE222169.csv" |
|
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 0 |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert trait values to binary: 1 for AML cases""" |
|
if pd.isna(value): |
|
return None |
|
value = value.split(': ')[-1].lower() |
|
|
|
if 'aml' in value or 'molm-14' in value or 'oci-aml2' in value: |
|
return 1 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
"""Placeholder function - age data not available""" |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Placeholder function - gender data not available""" |
|
return None |
|
|
|
|
|
_ = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Preview of processed clinical data:") |
|
print(preview_df(selected_clinical)) |
|
|
|
|
|
selected_clinical.to_csv(out_clinical_data_file) |
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("First 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation columns and example values:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
def extract_gene_symbols_from_desc(text): |
|
"""Extract gene symbols from complex annotation text that follows format: |
|
... (SYMBOL) [gene_biotype ... |
|
""" |
|
if pd.isna(text): |
|
return [] |
|
|
|
|
|
symbols = [] |
|
entries = text.split('//') |
|
for entry in entries: |
|
|
|
match = re.search(r'\(([^)]+)\)\s*\[gene_biotype', entry) |
|
if match: |
|
symbol = match.group(1) |
|
|
|
symbol = re.sub(r'\s*\([^)]+\)$', '', symbol) |
|
symbols.append(symbol) |
|
return list(set(symbols)) |
|
|
|
|
|
gene_annotation['Gene'] = gene_annotation['SPOT_ID.1'].apply(extract_gene_symbols_from_desc) |
|
|
|
|
|
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Gene') |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_data) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
selected_clinical = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=0, |
|
convert_trait=convert_trait, |
|
age_row=None, |
|
convert_age=None, |
|
gender_row=None, |
|
convert_gender=None |
|
) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note="Gene expression data comparing different AML cell lines and treatments." |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |