|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Acute_Myeloid_Leukemia" |
|
cohort = "GSE249638" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia" |
|
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE249638" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE249638.csv" |
|
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE249638.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE249638.csv" |
|
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 1 |
|
def convert_trait(x): |
|
if not x or ':' not in x: |
|
return None |
|
value = x.split(':')[1].strip().lower() |
|
if 'acute myeloid leukemia' in value: |
|
return 1 |
|
elif 'healthy control' in value: |
|
return 0 |
|
return None |
|
|
|
|
|
age_row = None |
|
convert_age = None |
|
|
|
|
|
gender_row = None |
|
convert_gender = None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_features = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Preview of clinical features:") |
|
print(preview_df(clinical_features)) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("First 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation columns and example values:") |
|
print(preview_df(gene_annotation)) |
|
|
|
gene_annotation = gene_annotation.drop('ID', axis=1) |
|
gene_annotation = gene_annotation.rename(columns={'probeset_id': 'ID'}) |
|
mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping) |
|
|
|
|
|
print("\nPreview of mapped gene expression data:") |
|
print(preview_df(gene_data)) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note="Gene expression data from AML cell lines. Trait defined as AMKL vs non-AMKL subtypes." |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |