|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Acute_Myeloid_Leukemia" |
|
|
|
|
|
tcga_root_dir = "../DATA/TCGA" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/TCGA.csv" |
|
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/TCGA.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/TCGA.csv" |
|
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json" |
|
|
|
|
|
subdirectory = 'TCGA_Acute_Myeloid_Leukemia_(LAML)' |
|
cohort_dir = os.path.join(tcga_root_dir, subdirectory) |
|
|
|
|
|
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) |
|
|
|
|
|
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') |
|
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') |
|
|
|
|
|
print("Clinical data columns:") |
|
print(clinical_df.columns.tolist()) |
|
|
|
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] |
|
candidate_gender_cols = ['gender'] |
|
|
|
|
|
cohort_dir = os.path.join(tcga_root_dir, "LAML") |
|
if not os.path.exists(cohort_dir): |
|
print(f"Error: Directory not found: {cohort_dir}") |
|
print("Please verify the data directory structure and path configuration.") |
|
else: |
|
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir) |
|
clinical_df = pd.read_csv(clinical_file_path, index_col=0) |
|
|
|
|
|
age_preview = {} |
|
for col in candidate_age_cols: |
|
age_preview[col] = clinical_df[col].head(5).tolist() |
|
print("Age columns preview:", age_preview) |
|
|
|
|
|
gender_preview = {} |
|
for col in candidate_gender_cols: |
|
gender_preview[col] = clinical_df[col].head(5).tolist() |
|
print("\nGender columns preview:", gender_preview) |
|
|
|
cohort_dir = os.path.join(tcga_root_dir, "LAML") |
|
|
|
|
|
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir) |
|
|
|
|
|
clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0) |
|
|
|
|
|
age_col = None |
|
gender_col = None |
|
|
|
|
|
age_candidates = [col for col in clinical_df.columns if 'age' in col.lower()] |
|
if age_candidates: |
|
|
|
for col in age_candidates: |
|
preview = clinical_df[col].head() |
|
|
|
converted = preview.apply(tcga_convert_age) |
|
if not converted.isna().all(): |
|
age_col = col |
|
break |
|
|
|
|
|
gender_candidates = [col for col in clinical_df.columns if 'gender' in col.lower() or 'sex' in col.lower()] |
|
if gender_candidates: |
|
|
|
for col in gender_candidates: |
|
preview = clinical_df[col].head() |
|
|
|
converted = preview.apply(tcga_convert_gender) |
|
if not converted.isna().all(): |
|
gender_col = col |
|
break |
|
|
|
|
|
print(f"Selected age column: {age_col}") |
|
print(f"Selected gender column: {gender_col}") |
|
|
|
subdirectory = 'TCGA_Acute_Myeloid_Leukemia_(LAML)' |
|
cohort_dir = os.path.join(tcga_root_dir, subdirectory) |
|
|
|
|
|
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) |
|
|
|
|
|
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') |
|
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') |
|
|
|
|
|
print("Clinical data columns:") |
|
print(clinical_df.columns.tolist()) |
|
|
|
|
|
clinical_features = tcga_select_clinical_features( |
|
clinical_df, |
|
trait=trait, |
|
age_col='age_at_initial_pathologic_diagnosis', |
|
gender_col='gender' |
|
) |
|
|
|
|
|
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
normalized_gene_df.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = pd.concat([clinical_features, normalized_gene_df.T], axis=1) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Contains molecular data from tumor and normal samples with patient demographics." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort="TCGA", |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |