Liu-Hy's picture
Add files using upload-large-folder tool
dd19378 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Adrenocortical_Cancer"
cohort = "GSE19776"
# Input paths
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE19776"
# Output paths
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE19776.csv"
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE19776.csv"
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE19776.csv"
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on series title and extensive disease/tumor grade info, this appears to be a gene expression study
is_gene_available = True
# 2.1 Data Availability
# Trait (cancer stage) available in Feature 1 - extent of disease
trait_row = 1
# Age available in Feature 5
age_row = 5
# Gender available in Feature 4
gender_row = 4
# 2.2 Data Type Conversion Functions
def convert_trait(val: str) -> int:
"""Convert extent of disease to binary (0=localized, 1=advanced)"""
if not val or 'Unknown' in val:
return None
val = val.split(': ')[1].strip()
if val == 'Localized':
return 0
elif val in ['Regional', 'Metastatic']:
return 1
return None
def convert_age(val: str) -> float:
"""Convert age to float"""
if not val or 'Unknown' in val:
return None
try:
return float(val.split(': ')[1])
except:
return None
def convert_gender(val: str) -> int:
"""Convert gender to binary (0=F, 1=M)"""
if not val:
return None
val = val.split(': ')[1].strip()
if val == 'F':
return 0
elif val == 'M':
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract Clinical Features
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of selected clinical features:")
print(preview_df(selected_clinical))
# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Looking at the data, we see numeric IDs (3,4,5,8,9 etc) being used as identifiers
# These are not standard human gene symbols, which are typically alphanumeric (e.g. TP53, BRCA1)
# Therefore mapping will be required to convert these IDs to gene symbols
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file and get meaningful data
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())
# Print example rows showing the mapping information columns
print("\nSample mapping columns ('ID' and 'Gene Symbol'):")
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())
print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers")
print("'Gene Symbol' column: Contains gene symbol information")
# Get probe-to-gene mapping from annotation data
mapping_df = gene_annotation[['ID', 'Gene Symbol']].copy()
mapping_df = mapping_df.rename(columns={'Gene Symbol': 'Gene'})
# Convert IDs to string type and remove any leading/trailing whitespace
mapping_df['ID'] = mapping_df['ID'].astype(str).str.strip()
gene_data.index = gene_data.index.str.strip()
# Filter annotation data to match numeric probe IDs only
mapping_df = mapping_df[mapping_df['ID'].str.match(r'^\d+$')]
# Apply mapping to convert probe-level data to gene expression data
# Note: Each probe's expression will be divided among its target genes, then summed per gene
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Normalize gene symbols before saving
gene_data = normalize_gene_symbols_in_index(gene_data)
print("Shape after mapping probes to genes:", gene_data.shape)
print("\nFirst few rows of gene expression data:")
print(gene_data.head())
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Skip data linking since gene mapping failed
linked_data = pd.DataFrame() # Empty dataframe since no valid gene data
# Validate and save cohort info indicating the data is not usable
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=False, # Set to False since gene mapping failed
is_trait_available=True, # Clinical data was successfully extracted
is_biased=True, # No valid data to analyze
df=linked_data,
note="Gene mapping failed - numeric probe IDs in expression data did not match Affymetrix IDs in annotation"
)