|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Adrenocortical_Cancer" |
|
cohort = "GSE19776" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE19776" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE19776.csv" |
|
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE19776.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE19776.csv" |
|
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 1 |
|
|
|
|
|
age_row = 5 |
|
|
|
|
|
gender_row = 4 |
|
|
|
|
|
def convert_trait(val: str) -> int: |
|
"""Convert extent of disease to binary (0=localized, 1=advanced)""" |
|
if not val or 'Unknown' in val: |
|
return None |
|
val = val.split(': ')[1].strip() |
|
if val == 'Localized': |
|
return 0 |
|
elif val in ['Regional', 'Metastatic']: |
|
return 1 |
|
return None |
|
|
|
def convert_age(val: str) -> float: |
|
"""Convert age to float""" |
|
if not val or 'Unknown' in val: |
|
return None |
|
try: |
|
return float(val.split(': ')[1]) |
|
except: |
|
return None |
|
|
|
def convert_gender(val: str) -> int: |
|
"""Convert gender to binary (0=F, 1=M)""" |
|
if not val: |
|
return None |
|
val = val.split(': ')[1].strip() |
|
if val == 'F': |
|
return 0 |
|
elif val == 'M': |
|
return 1 |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
selected_clinical = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
print("Preview of selected clinical features:") |
|
print(preview_df(selected_clinical)) |
|
|
|
|
|
selected_clinical.to_csv(out_clinical_data_file) |
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
|
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation shape:", gene_annotation.shape) |
|
print("\nGene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
print("\nNumber of non-null values in each column:") |
|
print(gene_annotation.count()) |
|
|
|
|
|
print("\nSample mapping columns ('ID' and 'Gene Symbol'):") |
|
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string()) |
|
|
|
print("\nNote: Gene mapping will use:") |
|
print("'ID' column: Probe identifiers") |
|
print("'Gene Symbol' column: Contains gene symbol information") |
|
|
|
mapping_df = gene_annotation[['ID', 'Gene Symbol']].copy() |
|
mapping_df = mapping_df.rename(columns={'Gene Symbol': 'Gene'}) |
|
|
|
|
|
mapping_df['ID'] = mapping_df['ID'].astype(str).str.strip() |
|
gene_data.index = gene_data.index.str.strip() |
|
|
|
|
|
mapping_df = mapping_df[mapping_df['ID'].str.match(r'^\d+$')] |
|
|
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
print("Shape after mapping probes to genes:", gene_data.shape) |
|
print("\nFirst few rows of gene expression data:") |
|
print(gene_data.head()) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
linked_data = pd.DataFrame() |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=False, |
|
is_trait_available=True, |
|
is_biased=True, |
|
df=linked_data, |
|
note="Gene mapping failed - numeric probe IDs in expression data did not match Affymetrix IDs in annotation" |
|
) |