|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Adrenocortical_Cancer" |
|
cohort = "GSE49278" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE49278" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE49278.csv" |
|
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE49278.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE49278.csv" |
|
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = 2 |
|
age_row = 0 |
|
gender_row = 1 |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert cell type to binary where ACC=1""" |
|
if pd.isna(value): |
|
return None |
|
value = value.split(': ')[-1].strip().lower() |
|
if 'adrenocortical carcinoma' in value: |
|
return 1 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
"""Convert age to continuous numeric value""" |
|
if pd.isna(value): |
|
return None |
|
value = value.split(': ')[-1].strip() |
|
try: |
|
return float(value) |
|
except: |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Convert gender to binary where F=0, M=1""" |
|
if pd.isna(value): |
|
return None |
|
value = value.split(': ')[-1].strip().upper() |
|
if value == 'F': |
|
return 0 |
|
elif value == 'M': |
|
return 1 |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
_ = validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_features = geo_select_clinical_features( |
|
clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Preview of extracted clinical features:") |
|
print(preview_df(clinical_features)) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
import gzip |
|
print("Inspecting SOFT file for gene mapping information:") |
|
pattern = None |
|
with gzip.open(soft_file, 'rt') as f: |
|
for i, line in enumerate(f): |
|
if i < 100: |
|
if "gene_assignment" in line or "gene_symbol" in line: |
|
print(f"\nFound gene mapping pattern in line: {line.strip()}") |
|
pattern = line |
|
elif "transcript_id" in line or "mrna_assignment" in line: |
|
print(f"\nFound alternative mapping pattern in line: {line.strip()}") |
|
pattern = line |
|
else: |
|
break |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file, prefixes=['#', '!platform_table_begin', '!platform_table_end']) |
|
|
|
|
|
print("\nGene annotation shape:", gene_annotation.shape) |
|
print("\nAvailable columns:") |
|
print(gene_annotation.columns.tolist()) |
|
|
|
|
|
mapping_cols = [col for col in gene_annotation.columns if 'gene' in col.lower() |
|
or 'symbol' in col.lower() |
|
or 'transcript' in col.lower() |
|
or col == 'ID'] |
|
if mapping_cols: |
|
print("\nPreview of mapping-related columns:") |
|
print(gene_annotation[mapping_cols].head()) |
|
else: |
|
print("\nNo obvious gene mapping columns found. Displaying first row:") |
|
print(gene_annotation.iloc[0]) |