|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Adrenocortical_Cancer" |
|
cohort = "GSE68950" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE68950" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE68950.csv" |
|
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE68950.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE68950.csv" |
|
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = 3 |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
if value is None or ':' not in value: |
|
return None |
|
value = value.split(': ')[1].strip() |
|
|
|
return 1 if value == 'Adrenal Gland' else 0 |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
_ = validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
sample_characteristics = { |
|
3: ['organism part: Leukemia', 'organism part: Urinary tract', 'organism part: Prostate', |
|
'organism part: Stomach', 'organism part: Kidney', 'organism part: Thyroid Gland', |
|
'organism part: Brain', 'organism part: Skin', 'organism part: Muscle', |
|
'organism part: Head and Neck', 'organism part: Ovary', 'organism part: Lung', |
|
'organism part: Autonomic Ganglion', 'organism part: Endometrium', 'organism part: Pancreas', |
|
'organism part: Cervix', 'organism part: Breast', 'organism part: Colorectal', |
|
'organism part: Liver', 'organism part: Vulva', 'organism part: Bone', |
|
'organism part: Oesophagus', 'organism part: BiliaryTract', |
|
'organism part: Connective and Soft Tissue', 'organism part: Lymphoma', |
|
'organism part: Pleura', 'organism part: Testis', 'organism part: Placenta', |
|
'organism part: Adrenal Gland', 'organism part: Unknow'] |
|
} |
|
clinical_data = pd.DataFrame(sample_characteristics) |
|
|
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=None, |
|
gender_row=gender_row, |
|
convert_gender=None |
|
) |
|
|
|
|
|
preview = preview_df(selected_clinical_df) |
|
print(preview) |
|
|
|
|
|
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) |
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation shape:", gene_annotation.shape) |
|
print("\nGene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
print("\nNumber of non-null values in each column:") |
|
print(gene_annotation.count()) |
|
|
|
|
|
print("\nSample mapping columns ('ID' and 'Gene Symbol'):") |
|
print("\nFirst 5 rows:") |
|
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string()) |
|
|
|
print("\nNote: Gene mapping will use:") |
|
print("'ID' column: Probe identifiers") |
|
print("'Gene Symbol' column: Contains gene symbol information") |
|
|
|
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol') |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_data) |
|
|
|
|
|
print("Shape of gene expression data after mapping:", gene_data.shape) |
|
print("\nFirst few genes and their expression values:") |
|
print(gene_data.head()) |
|
|
|
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0) |
|
|
|
|
|
if selected_clinical.shape[0] == 1 and selected_clinical.iloc[0,0] == 0: |
|
print("Error: Clinical data contains only negative samples (all 0s). Dataset not suitable for analysis.") |
|
_ = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=None, |
|
df=None, |
|
note="Clinical data contains only negative samples - not suitable for case-control analysis" |
|
) |
|
else: |
|
|
|
gene_data.index = gene_data.index.str.replace('-mRNA', '') |
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note="Data from Sanger cell line Affymetrix gene expression project examining cancer cell lines" |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |