Liu-Hy's picture
Add files using upload-large-folder tool
25a2692 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Allergies"
cohort = "GSE203409"
# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE203409"
# Output paths
out_data_file = "./output/preprocess/3/Allergies/GSE203409.csv"
out_gene_data_file = "./output/preprocess/3/Allergies/gene_data/GSE203409.csv"
out_clinical_data_file = "./output/preprocess/3/Allergies/clinical_data/GSE203409.csv"
json_path = "./output/preprocess/3/Allergies/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True # Yes, this is a gene expression profiling study
# 2.1 Data Availability
# Trait (allergy) can be inferred from knockdown status (shFLG vs shC)
trait_row = 1 # 'knockdown' indicates filaggrin deficiency status
# Age and gender not applicable (cell line study)
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value):
if not isinstance(value, str):
return None
value = value.split(': ')[-1].strip().lower()
# shFLG = filaggrin deficient (1), shC = control (0)
if value == 'shflg':
return 1
elif value == 'shc':
return 0
return None
def convert_age(value):
return None
def convert_gender(value):
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of selected clinical features:")
preview_df(selected_clinical_df)
# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Check for gene identifiers format
# ILMN_ prefix indicates these are Illumina probes, not gene symbols
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file and get meaningful data
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())
# Print example rows showing the mapping information columns
print("\nSample mapping columns ('ID' and 'Symbol'):")
print(gene_annotation[['ID', 'Symbol']].head().to_string())
print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers")
print("'Symbol' column: Gene symbols")
# Get mapping dataframe between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Preview the mapped gene expression data
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped data:")
print(gene_data.head())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save normalized gene data
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
try:
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Determine if features are biased
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=linked_data,
note="Gene expression data successfully mapped and linked with clinical features"
)
# 6. Save linked data only if usable AND trait is not biased
if is_usable and not is_trait_biased:
linked_data.to_csv(out_data_file)
except Exception as e:
print(f"Error in data linking and processing: {str(e)}")
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=True,
df=pd.DataFrame(),
note=f"Data processing failed: {str(e)}"
)