Liu-Hy's picture
Add files using upload-large-folder tool
a0b62f5 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Anxiety_disorder"
cohort = "GSE60491"
# Input paths
in_trait_dir = "../DATA/GEO/Anxiety_disorder"
in_cohort_dir = "../DATA/GEO/Anxiety_disorder/GSE60491"
# Output paths
out_data_file = "./output/preprocess/3/Anxiety_disorder/GSE60491.csv"
out_gene_data_file = "./output/preprocess/3/Anxiety_disorder/gene_data/GSE60491.csv"
out_clinical_data_file = "./output/preprocess/3/Anxiety_disorder/clinical_data/GSE60491.csv"
json_path = "./output/preprocess/3/Anxiety_disorder/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on the background information, this dataset contains gene expression data from peripheral blood mononuclear cells
is_gene_available = True
# 2.1 Data Availability
# Trait data (anxiety) needs to be inferred from neuroticism score
trait_row = 12 # neuroticism data
age_row = 0 # age data available
gender_row = 1 # gender data available (male: 0/1)
# 2.2 Data Type Conversion Functions
def convert_trait(value):
"""Convert neuroticism score to binary anxiety trait.
High neuroticism (>1.0) is considered as having anxiety disorder"""
if not value or 'neuroticism:' not in value:
return None
try:
score = float(value.split(':')[1])
return 1 if score > 1.0 else 0
except:
return None
def convert_age(value):
"""Convert age string to integer"""
if not value or 'age:' not in value:
return None
try:
return int(value.split(':')[1])
except:
return None
def convert_gender(value):
"""Convert gender encoding where male:1 is kept as 1, male:0 means female so returns 0"""
if not value or 'male:' not in value:
return None
try:
return int(value.split(':')[1])
except:
return None
# 3. Save Metadata
_ = validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Extract Clinical Features
selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview and save clinical data
print("Preview of extracted clinical features:")
print(preview_df(selected_clinical_df))
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Check if the identifiers look like standard human gene symbols
# From the sample data, we can see identifiers like "A1BG", "A1CF", "A2M" which are standard human gene symbols
# Most identifiers follow the pattern of uppercase letters and numbers typical of HGNC symbols
# There are no probe IDs (like Affymetrix probe IDs) that would need mapping
requires_gene_mapping = False
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save normalized gene data
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
try:
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Determine if features are biased
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=linked_data,
note="Gene expression data successfully mapped and linked with clinical features"
)
# 6. Save linked data only if usable AND trait is not biased
if is_usable and not is_trait_biased:
linked_data.to_csv(out_data_file)
except Exception as e:
print(f"Error in data linking and processing: {str(e)}")
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=True,
df=pd.DataFrame(),
note=f"Data processing failed: {str(e)}"
)