Liu-Hy's picture
Add files using upload-large-folder tool
324058b verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Asthma"
cohort = "GSE123088"
# Input paths
in_trait_dir = "../DATA/GEO/Asthma"
in_cohort_dir = "../DATA/GEO/Asthma/GSE123088"
# Output paths
out_data_file = "./output/preprocess/3/Asthma/GSE123088.csv"
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE123088.csv"
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE123088.csv"
json_path = "./output/preprocess/3/Asthma/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# CD4+ T cells data likely contains gene expression, not just miRNA or methylation
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 1 # 'primary diagnosis' contains trait info
age_row = 3 # 'age' data starts at feature 3 and continues in feature 4
gender_row = 2 # 'Sex' info is in feature 2
# 2.2 Data Type Conversion Functions
def convert_trait(value):
if pd.isna(value):
return None
value = value.split(': ')[1]
# Convert values to binary (0: control, 1: asthma)
if value in ['HEALTHY_CONTROL', 'Control']:
return 0
elif value in ['ASTHMA']:
return 1
return None
def convert_age(value):
if pd.isna(value):
return None
try:
# Extract numeric age value after colon
age = int(value.split(': ')[1])
return age
except:
return None
def convert_gender(value):
if pd.isna(value):
return None
if not value.startswith('Sex:'):
return None
value = value.split(': ')[1]
# Convert to binary (0: female, 1: male)
if value.upper() == 'FEMALE':
return 0
elif value.upper() == 'MALE':
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
preview = preview_df(selected_clinical)
print("Preview of processed clinical data:")
print(preview)
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The identifiers appear to be numeric IDs from 1-24166
# These are not gene symbols and will need mapping
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract platform info from SOFT file line by line
import gzip
import re
platform_lines = []
gene_symbol_lines = []
with gzip.open(soft_file, 'rt') as f:
in_platform_block = False
for line in f:
if line.startswith('!Platform_'):
platform_lines.append(line.strip())
if 'table_begin' in line:
in_platform_block = True
# Skip header line
next(f)
continue
elif 'table_end' in line:
in_platform_block = False
continue
elif in_platform_block:
gene_symbol_lines.append(line.strip())
# Parse platform annotation table
import pandas as pd
import io
platform_table = pd.read_csv(io.StringIO('\n'.join(gene_symbol_lines)), sep='\t')
# Preview annotation data
print("Platform Information:")
for line in platform_lines[:5]:
print(line)
print("\nPlatform Annotation Table Preview:")
print("Column names:", platform_table.columns.tolist())
print("\nFirst few rows:")
print(preview_df(platform_table))
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Look through entire SOFT file for gene symbol information
import gzip
platform_lines = []
gene_table_lines = []
with gzip.open(soft_file, 'rt') as f:
in_gene_table = False
table_found = False
for line in f:
# Keep track of platform lines for debugging
if line.startswith('!Platform_'):
platform_lines.append(line.strip())
if 'table_begin' in line:
in_gene_table = True
# Get header line
header = next(f).strip()
gene_table_lines.append(header)
continue
elif 'table_end' in line:
in_gene_table = False
elif in_gene_table and ('gene_symbol' in line.lower() or 'gene_name' in line.lower() or
'symbol' in line.lower() or 'gene_assignment' in line.lower()):
table_found = True
gene_table_lines.append(line.strip())
print("Platform information:")
for line in platform_lines[:10]:
print(line)
print("\nFirst few gene table lines (if gene symbols found):")
if gene_table_lines:
for line in gene_table_lines[:5]:
print(line)
print("\nSearching for alternative annotation fields...")
# Extract gene annotation trying both methods
gene_annotation = get_gene_annotation(soft_file)
# Preview annotation dataframe structure
print("\nGene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary (showing all columns):")
pd.set_option('display.max_columns', None)
print(gene_annotation.head().to_dict('records'))
# Create mapping dataframe using platform's annotation
mapping_data = gene_annotation.loc[:, ['ID', 'ENTREZ_GENE_ID']].dropna()
# Create a list of genes for the Gene column, single gene ID per row
mapping_data['Gene'] = mapping_data['ENTREZ_GENE_ID'].map(lambda x: [str(int(float(x)))] if pd.notnull(x) and float(x) > 0 else [])
mapping_data = mapping_data.drop(columns=['ENTREZ_GENE_ID'])
# Apply gene mapping to transform probe-level data to gene-level data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)
# Normalize gene symbols to consistent format
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Get file paths and read data
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get gene annotation and expression data
gene_annotation = get_gene_annotation(soft_file)
gene_data = get_genetic_data(matrix_file)
# Clean and create mapping dataframe
gene_annotation = gene_annotation[gene_annotation['ENTREZ_GENE_ID'].str.isnumeric().fillna(False)]
mapping_data = gene_annotation.loc[:, ['ID', 'ENTREZ_GENE_ID']].dropna()
mapping_data['Gene'] = mapping_data['ENTREZ_GENE_ID'].map(lambda x: [str(int(float(x)))] if pd.notnull(x) and float(x) > 0 else [])
mapping_data = mapping_data.drop(columns=['ENTREZ_GENE_ID'])
# Apply gene mapping to transform probe-level data to gene-level data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)
# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Link clinical and genetic data
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Evaluate bias
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Dataset contains gene expression data from CD4+ T cells."
)
# Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)