|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Bile_Duct_Cancer" |
|
cohort = "GSE107754" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Bile_Duct_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Bile_Duct_Cancer/GSE107754" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Bile_Duct_Cancer/GSE107754.csv" |
|
out_gene_data_file = "./output/preprocess/3/Bile_Duct_Cancer/gene_data/GSE107754.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Bile_Duct_Cancer/clinical_data/GSE107754.csv" |
|
json_path = "./output/preprocess/3/Bile_Duct_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
for feature, values in unique_values_dict.items(): |
|
print(f"\n{feature}:") |
|
print(values) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 2 |
|
gender_row = 0 |
|
age_row = None |
|
|
|
|
|
def convert_trait(x): |
|
if not isinstance(x, str): |
|
return None |
|
if ":" not in x: |
|
return None |
|
value = x.split(": ")[1].lower() |
|
|
|
return 1 if "bile duct cancer" in value else 0 |
|
|
|
def convert_gender(x): |
|
if not isinstance(x, str): |
|
return None |
|
if ":" not in x: |
|
return None |
|
value = x.split(": ")[1].lower() |
|
return 0 if "female" in value else 1 if "male" in value else None |
|
|
|
|
|
convert_age = None |
|
|
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |
|
|
|
|
|
|
|
selected_clinical = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
preview = preview_df(selected_clinical) |
|
print("Selected clinical features preview:", preview) |
|
|
|
|
|
selected_clinical.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 gene/probe IDs:") |
|
print(list(genetic_data.index[:20])) |
|
|
|
print("\nData preview:") |
|
preview_subset = genetic_data.iloc[:5, :5] |
|
print(preview_subset) |
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file_path) |
|
|
|
|
|
preview = preview_df(gene_metadata) |
|
print("\nGene annotation columns and sample values:") |
|
print(preview) |
|
|
|
|
|
|
|
probe_col = 'ID' |
|
gene_col = 'GENE_SYMBOL' |
|
|
|
|
|
mapping_data = get_gene_mapping(gene_metadata, probe_col, gene_col) |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_data) |
|
|
|
|
|
print("\nGene expression data preview (first 5 genes, first 5 samples):") |
|
print(gene_data.iloc[:5, :5]) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) |
|
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Gene expression data from whole blood. Samples include SJIA patients treated with canakinumab/placebo and healthy controls." |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |