|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Bladder_Cancer" |
|
|
|
|
|
tcga_root_dir = "../DATA/TCGA" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Bladder_Cancer/TCGA.csv" |
|
out_gene_data_file = "./output/preprocess/3/Bladder_Cancer/gene_data/TCGA.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Bladder_Cancer/clinical_data/TCGA.csv" |
|
json_path = "./output/preprocess/3/Bladder_Cancer/cohort_info.json" |
|
|
|
|
|
subdirectory = 'TCGA_Bladder_Cancer_(BLCA)' |
|
cohort_dir = os.path.join(tcga_root_dir, subdirectory) |
|
|
|
|
|
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) |
|
|
|
|
|
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') |
|
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') |
|
|
|
|
|
print("Clinical data columns:") |
|
print(clinical_df.columns.tolist()) |
|
|
|
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'age_began_smoking_in_years', 'days_to_birth'] |
|
candidate_gender_cols = ['gender'] |
|
|
|
|
|
print("TCGA root directory contents:") |
|
print(os.listdir(tcga_root_dir)) |
|
|
|
age_col_samples = { |
|
'age_at_initial_pathologic_diagnosis': [62, 68, 71, 69, 76], |
|
'age': [62, 68, 71, 69, 76] |
|
} |
|
|
|
gender_col_samples = { |
|
'gender': ['MALE', 'MALE', 'MALE', 'MALE', 'FEMALE'] |
|
} |
|
|
|
|
|
age_col = 'age_at_initial_pathologic_diagnosis' |
|
gender_col = 'gender' |
|
|
|
|
|
print(f"Selected age column: {age_col}") |
|
print(f"Selected gender column: {gender_col}") |
|
|
|
|
|
clinical_features = tcga_select_clinical_features( |
|
clinical_df, |
|
trait=trait, |
|
age_col='age_at_initial_pathologic_diagnosis', |
|
gender_col='gender' |
|
) |
|
|
|
|
|
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
normalized_gene_df.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = pd.concat([clinical_features, normalized_gene_df.T], axis=1) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Contains molecular data from tumor and normal samples with patient demographics." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort="TCGA", |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |