|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "COVID-19" |
|
cohort = "GSE185658" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/COVID-19" |
|
in_cohort_dir = "../DATA/GEO/COVID-19/GSE185658" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/COVID-19/GSE185658.csv" |
|
out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE185658.csv" |
|
out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE185658.csv" |
|
json_path = "./output/preprocess/3/COVID-19/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = 1 |
|
|
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> Optional[int]: |
|
"""Convert asthma status to binary (0: healthy, 1: asthma)""" |
|
if not value: |
|
return None |
|
|
|
value = value.split(': ')[-1].strip().lower() |
|
if 'asthma' in value: |
|
return 1 |
|
elif 'healthy' in value: |
|
return 0 |
|
return None |
|
|
|
def convert_age(value: str) -> Optional[float]: |
|
"""Convert age to float""" |
|
return None |
|
|
|
def convert_gender(value: str) -> Optional[int]: |
|
"""Convert gender to binary (0: female, 1: male)""" |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
print("Preview of selected clinical features:") |
|
print(preview_df(selected_clinical_df)) |
|
|
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 gene/probe IDs:") |
|
print(list(genetic_data.index)[:20]) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file_path) |
|
|
|
|
|
print("Gene annotation columns preview:") |
|
print(preview_df(gene_metadata)) |
|
|
|
|
|
|
|
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_df) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) |
|
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "" |
|
if os.path.getsize(out_gene_data_file) == 0: |
|
note = "Gene mapping failed - empty gene expression data" |
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |