Liu-Hy's picture
Add files using upload-large-folder tool
13fd1a3 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "COVID-19"
cohort = "GSE213313"
# Input paths
in_trait_dir = "../DATA/GEO/COVID-19"
in_cohort_dir = "../DATA/GEO/COVID-19/GSE213313"
# Output paths
out_data_file = "./output/preprocess/3/COVID-19/GSE213313.csv"
out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE213313.csv"
out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE213313.csv"
json_path = "./output/preprocess/3/COVID-19/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# Yes, this is microarray analysis of whole blood RNA samples according to background info
is_gene_available = True
# 2.1 Row Identifiers
trait_row = 2 # severity info in row 2
age_row = None # age not available in characteristics
gender_row = None # gender not available in characteristics
# 2.2 Conversion Functions
def convert_trait(value: str) -> Optional[float]:
if not value or ':' not in value:
return None
severity = value.split(':')[1].strip().lower()
if severity == 'critical':
return 1.0 # More severe
elif severity == 'non-critical':
return 0.0 # Less severe
return None # Healthy controls excluded
def convert_age(value: str) -> Optional[float]:
return None # Not used since age data unavailable
def convert_gender(value: str) -> Optional[float]:
return None # Not used since gender data unavailable
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract Clinical Features
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data, # clinical_data from previous step
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed data
preview_df(selected_clinical_df)
# Save to CSV
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)
# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
# Verify this is gene expression data and check identifiers
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Save gene expression data
genetic_data.to_csv(out_gene_data_file)
# Based on the gene identifiers like 'A_19_P00315452', these appear to be Agilent array probes
# rather than standard human gene symbols. They need to be mapped to gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# This is human gene data with proper annotations
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Inspect the gene annotation data and identify relevant columns
# 'ID' contains probe IDs matching gene expression data
# 'GENE_SYMBOL' contains the target gene symbols
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL')
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview result
print("\nGene expression data preview:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# Print diagnostic information
print("\nDiagnostic Information:")
print("Clinical features shape:", clinical_features.shape)
print("Normalized gene data shape:", normalized_gene_data.shape)
print("\nSample of clinical feature IDs:", clinical_features.columns[:5].tolist())
print("Sample of genetic data IDs:", normalized_gene_data.columns[:5].tolist())
# 2. Link clinical and genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Print linked data info
print("\nLinked data shape before bias check:", linked_data.shape)
print("Columns in linked data:", linked_data.columns[:5].tolist())
# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Dataset contains whole blood transcriptomic data comparing critical vs non-critical COVID-19 patients."
)
# 6. Save linked data if usable
if is_usable:
print("\nSaving linked data with shape:", linked_data.shape)
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
print("Please provide the output from the previous step containing sample characteristics and background information to proceed with data availability assessment and feature extraction.")
raise ValueError("Missing required input from previous step - cannot determine data availability without sample characteristics dictionary")
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# From background info: "microarray analysis of serial whole blood RNA samples"
# This indicates gene expression data is available
is_gene_available = True
# 2.1 Data Availability
# From sample characteristics:
trait_row = 2 # 'severity' indicates COVID-19 severity status
age_row = None # Age data not available
gender_row = None # Gender data not available
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert severity level to binary (0: Non-critical, 1: Critical)"""
if value is None:
return None
value = value.split(": ")[-1].strip()
if value == "Critical":
return 1
elif value == "Non-critical":
return 0
return None
def convert_age(value: str) -> Optional[float]:
"""Convert age to float - placeholder since age not available"""
return None
def convert_gender(value: str) -> Optional[int]:
"""Convert gender to binary - placeholder since gender not available"""
return None
# 3. Save Metadata
# Trait data is available since trait_row is not None
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
# Extract clinical features since trait_row is not None
clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait)
# Preview the processed clinical data
print("Preview of clinical features:")
print(preview_df(clinical_features))
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)
# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
# Verify this is gene expression data and check identifiers
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Save gene expression data
genetic_data.to_csv(out_gene_data_file)
# Given that the gene identifiers start with "A_19_P", these are Agilent probe IDs and not standard gene symbols
# They will need to be mapped to official human gene symbols for biological interpretation
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# This is human gene data with proper annotations
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Inspect the gene annotation data and identify relevant columns
# 'ID' contains probe IDs matching gene expression data
# 'GENE_SYMBOL' contains the target gene symbols
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL')
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview result
print("\nGene expression data preview:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# Load saved clinical features
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Dataset contains whole blood transcriptomic data comparing critical vs non-critical COVID-19 patients, with gene expression profiles from 19 critical and 15 non-critical patients."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)