|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Cardiovascular_Disease" |
|
cohort = "GSE256539" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Cardiovascular_Disease" |
|
in_cohort_dir = "../DATA/GEO/Cardiovascular_Disease/GSE256539" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Cardiovascular_Disease/GSE256539.csv" |
|
out_gene_data_file = "./output/preprocess/3/Cardiovascular_Disease/gene_data/GSE256539.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Cardiovascular_Disease/clinical_data/GSE256539.csv" |
|
json_path = "./output/preprocess/3/Cardiovascular_Disease/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("=== Dataset Background Information ===") |
|
print(background_info) |
|
print("\n=== Sample Characteristics ===") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = 0 |
|
|
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(x: str) -> int: |
|
"""Convert sample ID to binary trait (0: Control, 1: PAH)""" |
|
if not isinstance(x, str): |
|
return None |
|
|
|
sample_id = x.split(':')[-1].strip() |
|
|
|
if sample_id.startswith('CC'): |
|
return 0 |
|
|
|
elif any(sample_id.startswith(x) for x in ['AH','UA','BA','VA','UC']): |
|
return 1 |
|
return None |
|
|
|
|
|
convert_age = None |
|
convert_gender = None |
|
|
|
|
|
_ = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Preview of processed clinical data:") |
|
print(preview_df(clinical_df)) |
|
|
|
|
|
clinical_df.to_csv(out_clinical_data_file) |
|
|
|
genetic_df = get_genetic_data(matrix_file) |
|
|
|
|
|
print("First 20 gene/probe IDs:") |
|
print(list(genetic_df.index)[:20]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requires_gene_mapping = False |
|
|
|
genetic_df = normalize_gene_symbols_in_index(genetic_df) |
|
genetic_df.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_df, genetic_df) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Gene expression data from pulmonary vascular lesions in IPAH patients compared to control pulmonary arteries. Contains trait (PAH vs Control) data but lacks age and gender information." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |