|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Chronic_Fatigue_Syndrome" |
|
cohort = "GSE39684" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Chronic_Fatigue_Syndrome" |
|
in_cohort_dir = "../DATA/GEO/Chronic_Fatigue_Syndrome/GSE39684" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/GSE39684.csv" |
|
out_gene_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/gene_data/GSE39684.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/clinical_data/GSE39684.csv" |
|
json_path = "./output/preprocess/3/Chronic_Fatigue_Syndrome/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("=== Dataset Background Information ===") |
|
print(background_info) |
|
print("\n=== Sample Characteristics ===") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = 1 |
|
|
|
age_row = None |
|
|
|
gender_row = None |
|
|
|
|
|
def convert_trait(val): |
|
if not isinstance(val, str): |
|
return None |
|
|
|
if "cohort:" in val: |
|
year = val.split(":")[1].strip() |
|
if year == "2006": |
|
return 1 |
|
elif year == "2012": |
|
return 0 |
|
return None |
|
|
|
def convert_age(val): |
|
|
|
return None |
|
|
|
def convert_gender(val): |
|
|
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_features = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
print("Preview of extracted clinical features:") |
|
print(preview_df(clinical_features)) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
genetic_df = get_genetic_data(matrix_file) |
|
|
|
|
|
print("DataFrame shape:", genetic_df.shape) |
|
print("\nFirst 20 row IDs:") |
|
print(genetic_df.index[:20]) |
|
|
|
print("\nPreview of first few rows and columns:") |
|
print(genetic_df.head().iloc[:, :5]) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Column names:") |
|
print(gene_metadata.columns) |
|
print("\nPreview of gene annotation data:") |
|
print(preview_df(gene_metadata)) |
|
|
|
print("\nIMPORTANT NOTE: After reviewing the gene annotation data,") |
|
print("it is clear this dataset contains viral gene expression data (Parvovirus, Retrovirus etc.)") |
|
print("rather than human gene expression data. Therefore this dataset is not suitable for human trait analysis.") |
|
|
|
|
|
is_gene_available = False |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |