|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Depression" |
|
cohort = "GSE208668" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Depression" |
|
in_cohort_dir = "../DATA/GEO/Depression/GSE208668" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Depression/GSE208668.csv" |
|
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE208668.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE208668.csv" |
|
json_path = "./output/preprocess/3/Depression/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("=== Dataset Background Information ===") |
|
print(background_info) |
|
print("\n=== Sample Characteristics ===") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
|
|
is_gene_available = False |
|
|
|
|
|
|
|
trait_row = 9 |
|
|
|
age_row = 1 |
|
|
|
gender_row = 2 |
|
|
|
|
|
def convert_trait(x): |
|
if not isinstance(x, str): |
|
return None |
|
x = x.lower().strip() |
|
if 'history of depression:' not in x: |
|
return None |
|
value = x.split(':')[1].strip() |
|
if value == 'yes': |
|
return 1 |
|
elif value == 'no': |
|
return 0 |
|
return None |
|
|
|
def convert_age(x): |
|
if not isinstance(x, str): |
|
return None |
|
if 'age:' not in x: |
|
return None |
|
try: |
|
return float(x.split(':')[1].strip()) |
|
except: |
|
return None |
|
|
|
def convert_gender(x): |
|
if not isinstance(x, str): |
|
return None |
|
if 'gender:' not in x: |
|
return None |
|
value = x.split(':')[1].strip().lower() |
|
if value == 'female': |
|
return 0 |
|
elif value == 'male': |
|
return 1 |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None)) |
|
|
|
|
|
|
|
clinical_df = geo_select_clinical_features(clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender) |
|
|
|
|
|
print("Preview of clinical data:") |
|
print(preview_df(clinical_df)) |
|
clinical_df.to_csv(out_clinical_data_file) |