|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Endometrioid_Cancer" |
|
cohort = "GSE73637" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Endometrioid_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE73637" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE73637.csv" |
|
out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE73637.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE73637.csv" |
|
json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("=== Dataset Background Information ===") |
|
print(background_info) |
|
print("\n=== Sample Characteristics ===") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = 3 |
|
|
|
|
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> Optional[int]: |
|
"""Convert histopathology to binary trait""" |
|
if not value or ':' not in value: |
|
return None |
|
value = value.split(':')[1].strip().lower() |
|
if 'endometrioid' in value: |
|
return 1 |
|
|
|
if any(x in value for x in ['serous', 'clear cell', 'undifferentiated']): |
|
return 0 |
|
return None |
|
|
|
def convert_age(value: str) -> Optional[float]: |
|
"""Placeholder function since age data not available""" |
|
return None |
|
|
|
def convert_gender(value: str) -> Optional[int]: |
|
"""Placeholder function since gender data not available""" |
|
return None |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_features = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
preview = preview_df(clinical_features) |
|
print("Preview of clinical features:") |
|
print(preview) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
genetic_df = get_genetic_data(matrix_file) |
|
|
|
|
|
print("DataFrame shape:", genetic_df.shape) |
|
print("\nFirst 20 row IDs:") |
|
print(genetic_df.index[:20]) |
|
|
|
print("\nPreview of first few rows and columns:") |
|
print(genetic_df.head().iloc[:, :5]) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
filtered_lines = [] |
|
with gzip.open(soft_file, 'rt') as f: |
|
for line in f: |
|
if not any(line.startswith(prefix) for prefix in ['^', '!', '#']): |
|
filtered_lines.append(line.strip()) |
|
|
|
|
|
print("Sample of filtered lines:") |
|
for line in filtered_lines[:5]: |
|
print(line) |
|
|
|
if filtered_lines: |
|
|
|
try: |
|
df_text = '\n'.join(filtered_lines) |
|
gene_metadata = pd.read_csv(io.StringIO(df_text), sep='\t', |
|
engine='python', on_bad_lines='skip') |
|
print("\nColumn names:") |
|
print(gene_metadata.columns) |
|
print("\nPreview:") |
|
print(preview_df(gene_metadata)) |
|
except Exception as e: |
|
print(f"Error creating DataFrame: {str(e)}") |
|
|
|
|
|
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GeneSymbol') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_df, mapping_df) |
|
|
|
|
|
print("Gene expression data shape:", gene_data.shape) |
|
print("\nPreview of first few rows and columns:") |
|
print(gene_data.head().iloc[:, :5]) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) |
|
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Study comparing ERα-chromatin interactions in endometrial tumors from patients with/without tamoxifen treatment history" |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |