Liu-Hy's picture
Add files using upload-large-folder tool
ff3b0fa verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Endometrioid_Cancer"
cohort = "GSE73637"
# Input paths
in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE73637"
# Output paths
out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE73637.csv"
out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE73637.csv"
out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE73637.csv"
json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# From series title and design, this appears to be gene expression data from cell lines
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Rows
# Trait (Endometrioid) can be determined from histopathology in row 3
trait_row = 3
# Age and gender not available for cell lines
age_row = None
gender_row = None
# 2.2 Conversion Functions
def convert_trait(value: str) -> Optional[int]:
"""Convert histopathology to binary trait"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if 'endometrioid' in value:
return 1
# For cases where we can be sure it's not endometrioid
if any(x in value for x in ['serous', 'clear cell', 'undifferentiated']):
return 0
return None
def convert_age(value: str) -> Optional[float]:
"""Placeholder function since age data not available"""
return None
def convert_gender(value: str) -> Optional[int]:
"""Placeholder function since gender data not available"""
return None
# 3. Save metadata
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_features)
print("Preview of clinical features:")
print(preview)
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# Given that the row identifiers are simply numerical indices (1, 2, 3, etc) rather than
# recognizable gene symbols like BRCA1, TP53, etc., we need to perform gene mapping
requires_gene_mapping = True
# Extract gene annotation data with proper handling
filtered_lines = []
with gzip.open(soft_file, 'rt') as f:
for line in f:
if not any(line.startswith(prefix) for prefix in ['^', '!', '#']):
filtered_lines.append(line.strip())
# Preview the structure of filtered lines
print("Sample of filtered lines:")
for line in filtered_lines[:5]:
print(line)
if filtered_lines:
# Try to create DataFrame from filtered lines
try:
df_text = '\n'.join(filtered_lines)
gene_metadata = pd.read_csv(io.StringIO(df_text), sep='\t',
engine='python', on_bad_lines='skip')
print("\nColumn names:")
print(gene_metadata.columns)
print("\nPreview:")
print(preview_df(gene_metadata))
except Exception as e:
print(f"Error creating DataFrame: {str(e)}")
# The gene expression data uses numerical IDs that match the 'ID' column in gene annotation
# The 'GeneSymbol' column contains the gene symbols we want to map to
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GeneSymbol')
# Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Print shape and preview to verify the mapping
print("Gene expression data shape:", gene_data.shape)
print("\nPreview of first few rows and columns:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study comparing ERα-chromatin interactions in endometrial tumors from patients with/without tamoxifen treatment history"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)