Liu-Hy's picture
Add files using upload-large-folder tool
ff3b0fa verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Endometrioid_Cancer"
# Input paths
tcga_root_dir = "../DATA/TCGA"
# Output paths
out_data_file = "./output/preprocess/3/Endometrioid_Cancer/TCGA.csv"
out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/TCGA.csv"
json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json"
# First list available directories to verify
print("Available directories in TCGA root:")
tcga_dirs = os.listdir(tcga_root_dir)
print(tcga_dirs)
# Get Endometrioid Cancer cohort directory path (UCEC = Uterine Corpus Endometrial Carcinoma)
cohort_name = "TCGA.UCEC.sampleMap" # Directory containing endometrial cancer data
cohort_dir = os.path.join(tcga_root_dir, cohort_name)
# Get clinical and genetic file paths
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)
# Load clinical and genetic data
clinical_df = pd.read_csv(clinical_file, sep='\t', index_col=0)
genetic_df = pd.read_csv(genetic_file, sep='\t', index_col=0)
# Print clinical data columns for analysis
print("\nClinical data columns:")
print(clinical_df.columns.tolist())
# Record data availability in metadata
validate_and_save_cohort_info(
is_final=False,
cohort="TCGA",
info_path=json_path,
is_gene_available=len(genetic_df.columns) > 0,
is_trait_available=True # Since we found the endometrial cancer directory
)
# First verify the root directory exists and print contents
print(f"TCGA root directory path: {tcga_root_dir}")
if os.path.exists(tcga_root_dir):
print("Directory exists. Contents:", os.listdir(tcga_root_dir))
# Get Endometrioid Cancer cohort directory path
cohort_dir = os.path.join(tcga_root_dir, "TCGA_Endometrioid_Cancer_(UCEC)")
# Get clinical and genetic file paths
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)
# Load clinical and genetic data
clinical_df = pd.read_csv(clinical_file, sep='\t', index_col=0)
genetic_df = pd.read_csv(genetic_file, sep='\t', index_col=0)
# Print clinical data columns for analysis
print("\nClinical data columns:")
print(clinical_df.columns.tolist())
# Record data availability in metadata
validate_and_save_cohort_info(
is_final=False,
cohort="TCGA",
info_path=json_path,
is_gene_available=len(genetic_df.columns) > 0,
is_trait_available=True # Since we're using the endometrial cancer directory
)
else:
print("Directory does not exist")
# Record unavailability in metadata
validate_and_save_cohort_info(
is_final=False,
cohort="TCGA",
info_path=json_path,
is_gene_available=False,
is_trait_available=False
)