Liu-Hy's picture
Add files using upload-large-folder tool
ff3b0fa verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Epilepsy"
cohort = "GSE63808"
# Input paths
in_trait_dir = "../DATA/GEO/Epilepsy"
in_cohort_dir = "../DATA/GEO/Epilepsy/GSE63808"
# Output paths
out_data_file = "./output/preprocess/3/Epilepsy/GSE63808.csv"
out_gene_data_file = "./output/preprocess/3/Epilepsy/gene_data/GSE63808.csv"
out_clinical_data_file = "./output/preprocess/3/Epilepsy/clinical_data/GSE63808.csv"
json_path = "./output/preprocess/3/Epilepsy/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# From the title and summary, this dataset studies hippocampal tissue gene expression in epilepsy patients
is_gene_available = True
# 2.1 Variable Availability
# Trait (epilepsy): Available in row 1 as binary phenotype
trait_row = 1
# Age: Not available in characteristics data
age_row = None
# Gender: Not available in characteristics data
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(x: str) -> int:
"""Convert epilepsy status to binary"""
if not isinstance(x, str):
return None
# Extract value after colon
value = x.split(": ")[-1].lower().strip()
# Only epilepsy cases are included based on summary
return 1 if value == "epilepsy" else None
def convert_age(x: str) -> float:
"""Convert age to float - not used since age not available"""
return None
def convert_gender(x: str) -> int:
"""Convert gender to binary - not used since gender not available"""
return None
# 3. Save Initial Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract Clinical Features
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print("Preview of clinical features:")
print(preview_df(clinical_features))
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)