Liu-Hy's picture
Add files using upload-large-folder tool
ff3b0fa verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Epilepsy"
cohort = "GSE65106"
# Input paths
in_trait_dir = "../DATA/GEO/Epilepsy"
in_cohort_dir = "../DATA/GEO/Epilepsy/GSE65106"
# Output paths
out_data_file = "./output/preprocess/3/Epilepsy/GSE65106.csv"
out_gene_data_file = "./output/preprocess/3/Epilepsy/gene_data/GSE65106.csv"
out_clinical_data_file = "./output/preprocess/3/Epilepsy/clinical_data/GSE65106.csv"
json_path = "./output/preprocess/3/Epilepsy/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Yes, this is a microarray gene expression dataset studying gene expression profiles in ASD
is_gene_available = True
# 2. Variable Availability and Row Numbers
# 2.1 Data Availability
trait_row = 1 # Disease type indicates ASD vs Normal
age_row = 3 # Donor age is available
gender_row = 4 # Donor sex is available
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
"""Convert disease type to binary (0: Normal/WT, 1: ASD)"""
if not isinstance(value, str):
return None
value = value.split(": ")[-1].strip().upper()
if value == "ASD":
return 1
elif value in ["NORMAL", "WT"]:
return 0
return None
def convert_age(value: str) -> Optional[float]:
"""Convert age to continuous numeric value"""
if not isinstance(value, str):
return None
value = value.split(": ")[-1].strip().lower()
if value == "embryonic":
return None
try:
return float(value)
except:
return None
def convert_gender(value: str) -> Optional[int]:
"""Convert gender to binary (0: Female, 1: Male)"""
if not isinstance(value, str):
return None
value = value.split(": ")[-1].strip().upper()
if value == "FEMALE":
return 0
elif value == "MALE":
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
# Since trait_row is not None, we need to extract clinical features
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted clinical features
print(preview_df(selected_clinical))
# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# Analyzing gene identifiers - these appear to be probe IDs from Illumina arrays
# (numeric format starting with 7892xxx) rather than standard human gene symbols
# Therefore, they need to be mapped to their corresponding gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Identify relevant columns
# From preview: 'ID' column contains probe IDs matching gene expression data
# 'gene_assignment' column contains gene symbol information
# 2. Extract mapping between probe IDs and gene symbols
mapping = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
# 3. Apply mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping)
# Preview results
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few rows and columns:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study comparing ERα-chromatin interactions in endometrial tumors from patients with/without tamoxifen treatment history"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)