|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Epilepsy" |
|
|
|
|
|
tcga_root_dir = "../DATA/TCGA" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Epilepsy/TCGA.csv" |
|
out_gene_data_file = "./output/preprocess/3/Epilepsy/gene_data/TCGA.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Epilepsy/clinical_data/TCGA.csv" |
|
json_path = "./output/preprocess/3/Epilepsy/cohort_info.json" |
|
|
|
|
|
cohorts = os.listdir(tcga_root_dir) |
|
|
|
|
|
clinical_df = None |
|
for cohort in cohorts: |
|
try: |
|
cohort_dir = os.path.join(tcga_root_dir, cohort) |
|
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir) |
|
clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0) |
|
break |
|
except: |
|
continue |
|
|
|
if clinical_df is not None: |
|
columns = clinical_df.columns.tolist() |
|
candidate_age_cols = [col for col in columns if 'age' in col.lower() or 'years' in col.lower()] |
|
candidate_gender_cols = [col for col in columns if 'gender' in col.lower() or 'sex' in col.lower()] |
|
else: |
|
candidate_age_cols = [] |
|
candidate_gender_cols = [] |
|
|
|
print(f"candidate_age_cols = {candidate_age_cols}") |
|
print(f"candidate_gender_cols = {candidate_gender_cols}") |
|
|
|
age_col = 'age_at_initial_pathologic_diagnosis' |
|
|
|
|
|
gender_col = 'gender' if candidate_gender_cols else None |
|
|
|
|
|
print(f'Selected age column: {age_col}') |
|
print(f'Selected gender column: {gender_col}') |
|
|
|
clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col) |
|
|
|
|
|
gene_expression_dir = os.path.join(tcga_root_dir, cohort) |
|
_, gene_file_path = tcga_get_relevant_filepaths(gene_expression_dir) |
|
genetic_df = pd.read_csv(gene_file_path, sep='\t', index_col=0) |
|
|
|
normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
normalized_genetic_df.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = pd.merge(normalized_genetic_df.T, clinical_df, left_index=True, right_index=True) |
|
|
|
|
|
linked_data[trait] = linked_data.index.map(tcga_convert_trait) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=len(normalized_genetic_df.columns) > 0, |
|
is_trait_available=trait in linked_data.columns, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note=f"Data from {cohort} cohort" |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |