Liu-Hy's picture
Add files using upload-large-folder tool
5bd5338 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Essential_Thrombocythemia"
cohort = "GSE103176"
# Input paths
in_trait_dir = "../DATA/GEO/Essential_Thrombocythemia"
in_cohort_dir = "../DATA/GEO/Essential_Thrombocythemia/GSE103176"
# Output paths
out_data_file = "./output/preprocess/3/Essential_Thrombocythemia/GSE103176.csv"
out_gene_data_file = "./output/preprocess/3/Essential_Thrombocythemia/gene_data/GSE103176.csv"
out_clinical_data_file = "./output/preprocess/3/Essential_Thrombocythemia/clinical_data/GSE103176.csv"
json_path = "./output/preprocess/3/Essential_Thrombocythemia/cohort_info.json"
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")
# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
print(f"{row}:")
print(f" {values}")
print()
# 1. Gene Expression Data Availability
# Series title mentions "Gene... expression profiles", so gene data is available
is_gene_available = True
# 2. Variable Availability and Data Row Identification
# 2.1 Data Type Selection and Data Row Identification
# Trait (ET vs Control) can be found in row 3 under 'disease'
trait_row = 3
# Age is not provided in the characteristics
age_row = None
# Gender is in row 1 under 'Sex'
gender_row = 1
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert disease status to binary (0: control, 1: ET)"""
if pd.isna(value):
return None
value = value.split(': ')[-1].strip().lower()
if 'et' in value:
return 1
elif 'healthy control' in value:
return 0
return None
def convert_age(value: str) -> float:
"""Convert age to float - not used since age not available"""
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary (0: female, 1: male)"""
if pd.isna(value):
return None
value = value.split(': ')[-1].strip().lower()
if value == 'f':
return 0
elif value == 'm':
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Extract Clinical Features
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview_result = preview_df(selected_clinical)
print("Preview of extracted clinical features:")
print(preview_result)
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# The identifiers appear to be probe IDs from a microarray platform, not standard gene symbols
# They need to be mapped to human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview_dict = preview_df(gene_annotation)
print("Column names and preview values:")
for col, values in preview_dict.items():
print(f"\n{col}:")
print(values)
# Get unique probe IDs from gene expression data to understand the format
probe_examples = genetic_data.index[:5].tolist()
# Extract the complete platform annotation table
gene_annotation = get_gene_annotation(soft_file_path, prefixes=['!platform_table_begin', '!platform_table_end'])
# Extract columns for mapping and rename them
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID_REF', gene_col='Gene Symbol')
# Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview the result
print("\nExample probe IDs from expression data:")
print(probe_examples)
print("\nFirst 5 rows of mapping data:")
print(mapping_data.head())
print("\nFirst 5 rows and 3 columns of mapped gene expression data:")
print(gene_data.iloc[:5, :3])
# Get unique probe IDs from gene expression data to understand the format
probe_examples = genetic_data.index[:5].tolist()
# Extract the complete platform annotation table
gene_annotation = get_gene_annotation(soft_file_path)
print("\nRaw annotation data columns:")
print(gene_annotation.columns.tolist())
# Based on column names in the raw data, we can see that probe IDs are in the 'ID' column
# and gene symbols are in the 'Gene Symbol' column
mapping_data = pd.DataFrame({
'ID': gene_annotation['ID'],
'Gene': gene_annotation['Gene Symbol']
})
# Fix any NaN values that might cause mapping issues
mapping_data = mapping_data.dropna()
# Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Preview results
print("\nExample probe IDs from expression data:")
print(probe_examples)
print("\nFirst 5 rows of mapping data:")
print(mapping_data.head())
print("\nFirst 5 rows and 3 columns of mapped gene expression data:")
print(gene_data.iloc[:5, :3])
# Check if genetic data is empty
if genetic_data.empty:
print("Gene expression data is empty - cannot proceed with linking and analysis")
# Record failure in cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=False,
is_trait_available=True,
is_biased=None,
df=None,
note="Gene mapping failed - unable to match probe IDs between expression and annotation data"
)
else:
# 1. Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(genetic_data)
normalized_gene_data.to_csv(out_gene_data_file)
# Read the processed clinical data file
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Link clinical and genetic data using the normalized gene data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate data quality and save cohort info
note = "Expression data comparing patients with Essential Thrombocythemia to controls with other myeloproliferative disorders (PMF, PV). No age or gender data available."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)
else:
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")