# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Essential_Thrombocythemia" | |
cohort = "GSE65161" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Essential_Thrombocythemia" | |
in_cohort_dir = "../DATA/GEO/Essential_Thrombocythemia/GSE65161" | |
# Output paths | |
out_data_file = "./output/preprocess/3/Essential_Thrombocythemia/GSE65161.csv" | |
out_gene_data_file = "./output/preprocess/3/Essential_Thrombocythemia/gene_data/GSE65161.csv" | |
out_clinical_data_file = "./output/preprocess/3/Essential_Thrombocythemia/clinical_data/GSE65161.csv" | |
json_path = "./output/preprocess/3/Essential_Thrombocythemia/cohort_info.json" | |
# Get relevant file paths | |
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) | |
# Extract background info and clinical data from the matrix file | |
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) | |
# Get dictionary of unique values per row in clinical data | |
unique_values_dict = get_unique_values_by_row(clinical_data) | |
# Print background info | |
print("Background Information:") | |
print("-" * 50) | |
print(background_info) | |
print("\n") | |
# Print clinical data unique values | |
print("Sample Characteristics:") | |
print("-" * 50) | |
for row, values in unique_values_dict.items(): | |
print(f"{row}:") | |
print(f" {values}") | |
print() | |
# 1. Gene Expression Data Availability | |
is_gene_available = False # Based on the background info, this dataset seems to focus on molecular studies of cell lines rather than gene expression | |
# 2.1 Data Availability | |
trait_row = None # No suitable trait data (Essential Thrombocythemia) can be found - these are cell lines | |
age_row = None # No age data available for cell lines | |
gender_row = None # No gender data available for cell lines | |
# 2.2 Data Type Conversion Functions | |
def convert_trait(x): | |
# Not needed since trait data is unavailable | |
return None | |
def convert_age(x): | |
# Not needed since age data is unavailable | |
return None | |
def convert_gender(x): | |
# Not needed since gender data is unavailable | |
return None | |
# 3. Save Initial Metadata | |
validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=False # trait_row is None | |
) | |
# 4. Clinical Feature Extraction | |
# Skip this step since trait_row is None |