Liu-Hy's picture
Add files using upload-large-folder tool
ee5a411 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Glioblastoma"
# Input paths
tcga_root_dir = "../DATA/TCGA"
# Output paths
out_data_file = "./output/preprocess/3/Glioblastoma/TCGA.csv"
out_gene_data_file = "./output/preprocess/3/Glioblastoma/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/3/Glioblastoma/clinical_data/TCGA.csv"
json_path = "./output/preprocess/3/Glioblastoma/cohort_info.json"
# 1. Select the relevant subdirectory for glioblastoma
subdirectory = 'TCGA_Glioblastoma_(GBM)'
cohort_dir = os.path.join(tcga_root_dir, subdirectory)
# 2. Get the file paths
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
# 3. Load the data files
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
# 4. Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# Define candidate columns for age and gender
candidate_age_cols = ['CDE_DxAge', 'age_at_initial_pathologic_diagnosis', 'days_to_birth']
candidate_gender_cols = ['gender']
# Preview age and gender columns from clinical data
age_cols_dict = clinical_df[candidate_age_cols].head(5).to_dict('list')
print(f"Age columns preview: {age_cols_dict}")
gender_cols_dict = clinical_df[candidate_gender_cols].head(5).to_dict('list')
print(f"Gender columns preview: {gender_cols_dict}")
# Analyze age columns
age_col = 'age_at_initial_pathologic_diagnosis' # Choose this as it provides direct age values in years
# Analyze gender columns
gender_col = 'gender' # Only one gender column available
# Print chosen columns
print(f"Chosen age column: {age_col}")
print(f"Chosen gender column: {gender_col}")
# 1. Extract and standardize clinical features
# Create trait labels from sample IDs (01-09: tumor=1, 10-19: normal=0)
clinical_features = tcga_select_clinical_features(
clinical_df,
trait=trait,
age_col='age_at_initial_pathologic_diagnosis',
gender_col='gender'
)
# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_features.to_csv(out_clinical_data_file)
# 2. Normalize gene symbols and save
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_df.to_csv(out_gene_data_file)
# 3. Link clinical and genetic data on sample IDs
linked_data = pd.merge(
clinical_features,
normalized_gene_df.T,
left_index=True,
right_index=True,
how='inner'
)
# 4. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 5. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 6. Validate data quality and save cohort info
note = "Contains molecular data from tumor and normal samples with patient demographics."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort="TCGA",
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 7. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)