|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Head_and_Neck_Cancer" |
|
cohort = "GSE104006" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Head_and_Neck_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Head_and_Neck_Cancer/GSE104006" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/GSE104006.csv" |
|
out_gene_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/gene_data/GSE104006.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/clinical_data/GSE104006.csv" |
|
json_path = "./output/preprocess/3/Head_and_Neck_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print("-" * 50) |
|
print(background_info) |
|
print("\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
print("-" * 50) |
|
for row, values in unique_values_dict.items(): |
|
print(f"{row}:") |
|
print(f" {values}") |
|
print() |
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = 0 |
|
age_row = 2 |
|
gender_row = 3 |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert disease status to binary where Thyroid_carcinoma=1, Non-neoplastic_thyroid=0""" |
|
if pd.isna(value) or ":" not in value: |
|
return None |
|
value = value.split(": ")[1] |
|
if "carcinoma" in value.lower(): |
|
return 1 |
|
elif "non-neoplastic" in value.lower(): |
|
return 0 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
"""Convert age to float""" |
|
if pd.isna(value) or ":" not in value: |
|
return None |
|
try: |
|
return float(value.split(": ")[1]) |
|
except: |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Convert gender to binary where F=0, M=1""" |
|
if pd.isna(value) or ":" not in value: |
|
return None |
|
value = value.split(": ")[1].upper() |
|
if value == 'F': |
|
return 0 |
|
elif value == 'M': |
|
return 1 |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |
|
|
|
|
|
clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
print("Preview of extracted clinical features:") |
|
print(preview_df(clinical_df)) |
|
|
|
|
|
clinical_df.to_csv(out_clinical_data_file) |
|
|
|
is_gene_available = False |
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |
|
print("Warning: Dataset contains miRNA data rather than gene expression data.") |
|
print("Further genetic data processing will be skipped.") |
|
genetic_data = None |