Liu-Hy's picture
Add files using upload-large-folder tool
e6817b9 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Heart_rate"
cohort = "GSE12385"
# Input paths
in_trait_dir = "../DATA/GEO/Heart_rate"
in_cohort_dir = "../DATA/GEO/Heart_rate/GSE12385"
# Output paths
out_data_file = "./output/preprocess/3/Heart_rate/GSE12385.csv"
out_gene_data_file = "./output/preprocess/3/Heart_rate/gene_data/GSE12385.csv"
out_clinical_data_file = "./output/preprocess/3/Heart_rate/clinical_data/GSE12385.csv"
json_path = "./output/preprocess/3/Heart_rate/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability - Yes, this is whole genome microarray data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# Heart rate data is not available in this dataset
trait_row = None
# Age data is available in row 1
age_row = 1
# Gender is available in row 0
gender_row = 0
# Conversion functions
def convert_trait(x):
# Not used since trait data is not available
return None
def convert_age(x):
try:
# Extract number after colon and convert to float
age = float(x.split(": ")[1])
return age
except:
return None
def convert_gender(x):
# All samples are male so return 1
return 1
# 3. Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
# Skip this step since trait data is not available (trait_row is None)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print information about the data structure
print("First few rows of the genetic data:")
print(genetic_data.head())
print("\nShape of genetic data:", genetic_data.shape)
print("\nColumn names:", genetic_data.columns.tolist())
# In this dataset, the identifiers appear to be numeric values (e.g. 1, 2, 3)
# These are probe IDs from a microarray platform which need to be mapped
# to human gene symbols for proper analysis.
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# In gene expression data, IDs are stored in the index
# In gene annotation data, looking at the columns, 'ID' matches these identifiers
# 'GENE_SYMBOL' contains the gene symbols we want to map to
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
# Apply the gene mapping to convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Save gene expression data to file
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Print information about the mapping results
print("Original probe data shape:", genetic_data.shape)
print("Mapped gene data shape:", gene_data.shape)
print("\nFirst few gene symbols and their expression values:")
print(gene_data.head())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data together
# Since trait data is not available, we have no clinical data to link with
clinical_data = pd.DataFrame()
if not clinical_data.empty:
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
else:
linked_data = pd.DataFrame()
# 3. Handle missing values if we have linked data
if not linked_data.empty and trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge whether features are biased and remove biased demographic features
is_biased = True # No trait data means it's biased by default
if not linked_data.empty and trait in linked_data.columns:
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "This dataset lacks heart rate measurements. The study focused on gene expression changes in PBMCs before and after physical activity, but did not include heart rate as a measured variable."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)