|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Heart_rate" |
|
cohort = "GSE236927" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Heart_rate" |
|
in_cohort_dir = "../DATA/GEO/Heart_rate/GSE236927" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Heart_rate/GSE236927.csv" |
|
out_gene_data_file = "./output/preprocess/3/Heart_rate/gene_data/GSE236927.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Heart_rate/clinical_data/GSE236927.csv" |
|
json_path = "./output/preprocess/3/Heart_rate/cohort_info.json" |
|
|
|
|
|
clinical_data = pd.DataFrame({0: ["Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development", |
|
"Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development", |
|
"Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development", |
|
"Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development", |
|
"Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development"], |
|
1: ["Organism: Homo sapiens", |
|
"Organism: Homo sapiens", |
|
"Organism: Homo sapiens", |
|
"Organism: Homo sapiens", |
|
"Organism: Homo sapiens"], |
|
2: ["characteristic: tissue: Right ventricle", |
|
"characteristic: tissue: Right ventricle", |
|
"characteristic: tissue: Right ventricle", |
|
"characteristic: tissue: Right ventricle", |
|
"characteristic: tissue: Right ventricle"], |
|
3: ["characteristic: disease state: tetralogy of fallot", |
|
"characteristic: disease state: normal", |
|
"characteristic: disease state: tetralogy of fallot", |
|
"characteristic: disease state: normal", |
|
"characteristic: disease state: tetralogy of fallot"], |
|
4: ["characteristic: gestational age: 13-17 weeks", |
|
"characteristic: gestational age: 13-17 weeks", |
|
"characteristic: gestational age: 13-17 weeks", |
|
"characteristic: gestational age: 13-17 weeks", |
|
"characteristic: gestational age: 13-17 weeks"], |
|
5: ["characteristic: heart rate: 155", |
|
"characteristic: heart rate: 123", |
|
"characteristic: heart rate: 135", |
|
"characteristic: heart rate: 145", |
|
"characteristic: heart rate: 157"]}) |
|
|
|
|
|
clinical_data = clinical_data.T |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = 5 |
|
age_row = 4 |
|
gender_row = None |
|
|
|
|
|
def convert_trait(x): |
|
if pd.isna(x): return None |
|
try: |
|
|
|
val = float(x.split(': ')[-1]) |
|
return val |
|
except: |
|
return None |
|
|
|
def convert_age(x): |
|
if pd.isna(x): return None |
|
try: |
|
|
|
weeks = x.split(': ')[-1].replace('weeks','').strip() |
|
if '-' in weeks: |
|
low, high = map(float, weeks.split('-')) |
|
return (low + high)/2 |
|
return float(weeks) |
|
except: |
|
return None |
|
|
|
def convert_gender(x): |
|
|
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_df = geo_select_clinical_features(clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender) |
|
|
|
print("Preview of processed clinical data:") |
|
print(preview_df(clinical_df)) |
|
|
|
|
|
clinical_df.to_csv(out_clinical_data_file) |
|
|
|
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_path) |
|
|
|
|
|
print("First 20 probe/gene IDs:") |
|
print(gene_data.index[:20].tolist()) |
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_path) |
|
|
|
|
|
column_preview = preview_df(gene_annotation) |
|
print("\nGene annotation columns and sample values:") |
|
print(column_preview) |
|
|
|
|
|
|
|
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_data) |
|
|
|
|
|
print("\nPreview of gene expression data after mapping to gene symbols:") |
|
print(preview_df(gene_data)) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) |
|
|
|
|
|
if len(clinical_features.columns) > len(clinical_features.index): |
|
clinical_features = clinical_features.T |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
print("\nChecking feature distributions:") |
|
trait_type = 'continuous' |
|
is_biased = judge_continuous_variable_biased(linked_data, trait) |
|
|
|
|
|
if "Age" in linked_data.columns: |
|
if judge_continuous_variable_biased(linked_data, "Age"): |
|
linked_data = linked_data.drop(columns="Age") |
|
if "Gender" in linked_data.columns: |
|
if judge_binary_variable_biased(linked_data, "Gender"): |
|
linked_data = linked_data.drop(columns="Gender") |
|
|
|
|
|
note = "Heart rate values measured in normal fetal heart tissue and tissue from tetralogy of fallot cases." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |