|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Heart_rate" |
|
cohort = "GSE34788" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Heart_rate" |
|
in_cohort_dir = "../DATA/GEO/Heart_rate/GSE34788" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Heart_rate/GSE34788.csv" |
|
out_gene_data_file = "./output/preprocess/3/Heart_rate/gene_data/GSE34788.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Heart_rate/clinical_data/GSE34788.csv" |
|
json_path = "./output/preprocess/3/Heart_rate/cohort_info.json" |
|
|
|
|
|
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_path) |
|
|
|
|
|
sample_chars = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
for feature, values in sample_chars.items(): |
|
print(f"\n{feature}:") |
|
print(values) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = 6 |
|
gender_row = 1 |
|
age_row = None |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert heart rate response to binary: 0 for low responders, 1 for high responders""" |
|
if not value or ':' not in value: |
|
return None |
|
value = value.split(':')[1].strip().lower() |
|
if 'low' in value: |
|
return 0 |
|
elif 'high' in value: |
|
return 1 |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Convert gender to binary: 0 for female, 1 for male""" |
|
if not value or ':' not in value: |
|
return None |
|
value = value.split(':')[1].strip().lower() |
|
if 'female' in value: |
|
return 0 |
|
elif 'male' in value: |
|
return 1 |
|
return None |
|
|
|
convert_age = None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
_ = validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_features = geo_select_clinical_features(clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender) |
|
|
|
|
|
preview = preview_df(clinical_features) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
gene_data = get_genetic_data(matrix_path) |
|
|
|
|
|
print("First 20 probe/gene IDs:") |
|
print(gene_data.index[:20].tolist()) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_path) |
|
|
|
|
|
column_preview = preview_df(gene_annotation) |
|
print("\nGene annotation columns and sample values:") |
|
print(column_preview) |
|
|
|
|
|
|
|
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') |
|
|
|
|
|
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
|
|
print("\nFirst 20 gene symbols after mapping:") |
|
print(gene_data.index[:20].tolist()) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_type = 'binary' if len(linked_data[trait].unique()) == 2 else 'continuous' |
|
if trait_type == "binary": |
|
is_biased = judge_binary_variable_biased(linked_data, trait) |
|
else: |
|
is_biased = judge_continuous_variable_biased(linked_data, trait) |
|
|
|
|
|
if "Age" in linked_data.columns: |
|
if judge_continuous_variable_biased(linked_data, "Age"): |
|
linked_data = linked_data.drop(columns="Age") |
|
if "Gender" in linked_data.columns: |
|
if judge_binary_variable_biased(linked_data, "Gender"): |
|
linked_data = linked_data.drop(columns="Gender") |
|
|
|
|
|
note = "The dataset contains before/after exercise measurements for each subject. We merged them to increase statistical power." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |