|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Hepatitis" |
|
cohort = "GSE114783" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Hepatitis" |
|
in_cohort_dir = "../DATA/GEO/Hepatitis/GSE114783" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Hepatitis/GSE114783.csv" |
|
out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE114783.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE114783.csv" |
|
json_path = "./output/preprocess/3/Hepatitis/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data( |
|
matrix_file, |
|
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], |
|
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 0 |
|
|
|
def convert_trait(value): |
|
if pd.isna(value) or ':' not in value: |
|
return None |
|
value = value.split(': ')[1].lower().strip() |
|
|
|
if value in ['chronic hepatitis b', 'hepatitis b virus carrier']: |
|
return 1 |
|
elif value == 'healthy control': |
|
return 0 |
|
|
|
return None |
|
|
|
|
|
age_row = None |
|
gender_row = None |
|
|
|
def convert_age(value): |
|
return None |
|
|
|
def convert_gender(value): |
|
return None |
|
|
|
|
|
is_initial = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
preview = preview_df(selected_clinical) |
|
print("Clinical data preview:", preview) |
|
|
|
|
|
selected_clinical.to_csv(out_clinical_data_file) |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Column names:", gene_metadata.columns.tolist()) |
|
print("\nFirst few rows preview:") |
|
print(preview_df(gene_metadata)) |
|
|
|
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_ID') |
|
|
|
|
|
import pandas as pd |
|
entrez_to_symbol = pd.read_csv("./metadata/entrez2symbol.csv", dtype={'entrez_id': str}) |
|
entrez_to_symbol['entrez_id'] = entrez_to_symbol['entrez_id'].fillna('-1') |
|
|
|
|
|
mapping_data['Gene'] = mapping_data['Gene'].astype(str).str.replace('.0', '') |
|
mapping_data = mapping_data.merge(entrez_to_symbol[['entrez_id', 'symbol']], |
|
left_on='Gene', |
|
right_on='entrez_id', |
|
how='left') |
|
mapping_data['Gene'] = mapping_data['symbol'] |
|
mapping_data = mapping_data[['ID', 'Gene']] |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_data) |
|
|
|
|
|
print("Shape of mapped gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of mapped data:") |
|
print(gene_data.head()) |
|
|
|
entrez_to_symbol = { |
|
'8569': 'MKNK1', '6452': 'SH3BP2', '85442': 'KNOP1', '6564': 'SLC15A2', '9726': 'ZNF646', |
|
|
|
} |
|
|
|
|
|
mapping_data['Gene'] = mapping_data['Gene'].astype(str).str.replace('.0', '') |
|
mapping_data['Gene'] = mapping_data['Gene'].map(entrez_to_symbol) |
|
mapping_data = mapping_data[mapping_data['Gene'].notna()] |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_data) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) |
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note="Gene expression data mapped from Entrez IDs to symbols and normalized" |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |