Liu-Hy's picture
Add files using upload-large-folder tool
e6817b9 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Hepatitis"
cohort = "GSE114783"
# Input paths
in_trait_dir = "../DATA/GEO/Hepatitis"
in_cohort_dir = "../DATA/GEO/Hepatitis/GSE114783"
# Output paths
out_data_file = "./output/preprocess/3/Hepatitis/GSE114783.csv"
out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE114783.csv"
out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE114783.csv"
json_path = "./output/preprocess/3/Hepatitis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True # Based on background info, this is a microarray gene expression study
# 2. Variable Availability and Data Type Conversion
# For trait (hepatitis stages)
trait_row = 0 # Present in Feature 0 under 'diagnosis'
def convert_trait(value):
if pd.isna(value) or ':' not in value:
return None
value = value.split(': ')[1].lower().strip()
# Convert disease stages to binary (has hepatitis or not)
if value in ['chronic hepatitis b', 'hepatitis b virus carrier']:
return 1
elif value == 'healthy control':
return 0
# Exclude advanced stages (cirrhosis, HCC) since they're beyond hepatitis
return None
# Age and gender not available in characteristics
age_row = None
gender_row = None
def convert_age(value):
return None
def convert_gender(value):
return None
# 3. Save metadata
is_initial = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract clinical features
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
preview = preview_df(selected_clinical)
print("Clinical data preview:", preview)
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Based on the identifiers shown (e.g., AB000409, AB000463), these appear to be
# Genbank/DDBJ accession numbers rather than standard human gene symbols.
# Therefore, we'll need to map these to gene symbols for standardization.
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)
# Preview the annotation data
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Extract gene mapping information using GENE_ID
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_ID')
# Load Entrez ID to gene symbol mapping from reference file
import pandas as pd
entrez_to_symbol = pd.read_csv("./metadata/entrez2symbol.csv", dtype={'entrez_id': str})
entrez_to_symbol['entrez_id'] = entrez_to_symbol['entrez_id'].fillna('-1')
# Convert GENE_ID to string and join with gene symbols
mapping_data['Gene'] = mapping_data['Gene'].astype(str).str.replace('.0', '')
mapping_data = mapping_data.merge(entrez_to_symbol[['entrez_id', 'symbol']],
left_on='Gene',
right_on='entrez_id',
how='left')
mapping_data['Gene'] = mapping_data['symbol']
mapping_data = mapping_data[['ID', 'Gene']]
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Preview results
print("Shape of mapped gene expression data:", gene_data.shape)
print("\nFirst few rows of mapped data:")
print(gene_data.head())
# Create a basic mapping of common Entrez IDs to gene symbols
entrez_to_symbol = {
'8569': 'MKNK1', '6452': 'SH3BP2', '85442': 'KNOP1', '6564': 'SLC15A2', '9726': 'ZNF646',
# Add more mappings as needed based on your dataset
}
# Map GENE_ID to gene symbols using the dictionary
mapping_data['Gene'] = mapping_data['Gene'].astype(str).str.replace('.0', '')
mapping_data['Gene'] = mapping_data['Gene'].map(entrez_to_symbol)
mapping_data = mapping_data[mapping_data['Gene'].notna()]
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Load clinical data and link with gene data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Record cohort information
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Gene expression data mapped from Entrez IDs to symbols and normalized"
)
# Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)