Liu-Hy's picture
Add files using upload-large-folder tool
e6817b9 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Hepatitis"
cohort = "GSE85550"
# Input paths
in_trait_dir = "../DATA/GEO/Hepatitis"
in_cohort_dir = "../DATA/GEO/Hepatitis/GSE85550"
# Output paths
out_data_file = "./output/preprocess/3/Hepatitis/GSE85550.csv"
out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE85550.csv"
out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE85550.csv"
json_path = "./output/preprocess/3/Hepatitis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene expression data availability
# This dataset has liver biopsy samples for expression profiling
# No indicators of miRNA/methylation data, likely contains gene expression data
is_gene_available = True
# 2. Variable availability and data type conversion
# Looking at sample characteristics:
# trait_row = 2 (time_point indicates disease progression in hepatitis fibrosis)
# age_row = None as age data is not recorded
# gender_row = None as gender data is not recorded
trait_row = 2
age_row = None
gender_row = None
def convert_trait(x):
if not isinstance(x, str):
return None
value = x.split(': ')[-1].strip()
if value == 'Baseline':
return 0 # Early/mild fibrosis
elif value == 'Follow-up':
return 1 # Progressed fibrosis
return None
def convert_age(x):
# Not needed since age data not available
return None
def convert_gender(x):
# Not needed since gender data not available
return None
# 3. Save metadata about dataset usability
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract clinical features since trait_row is not None
clinical_features = geo_select_clinical_features(clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the extracted features
preview = preview_df(clinical_features)
print("Preview of clinical features:")
print(preview)
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Based on examination of the gene identifiers shown in the data, they appear to be human gene symbols (e.g. AARS, ABLIM1, ACOT2, etc.)
# These are official HGNC gene symbols, so no mapping is needed
requires_gene_mapping = False
# Skip normalization since data already uses standard symbols
gene_data.to_csv(out_gene_data_file)
# Load clinical data from previous steps
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Record cohort information
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Contains standard gene symbol expression data and clinical data."
)
# Save data if usable
if is_usable:
linked_data.to_csv(out_data_file)