|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Hypertension" |
|
cohort = "GSE74144" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Hypertension" |
|
in_cohort_dir = "../DATA/GEO/Hypertension/GSE74144" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Hypertension/GSE74144.csv" |
|
out_gene_data_file = "./output/preprocess/3/Hypertension/gene_data/GSE74144.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Hypertension/clinical_data/GSE74144.csv" |
|
json_path = "./output/preprocess/3/Hypertension/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
|
|
trait_row = 0 |
|
|
|
|
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert hypertension status to binary""" |
|
if not isinstance(value, str): |
|
return None |
|
value = value.split(': ')[-1].lower() |
|
if 'hypertensive patient' in value: |
|
return 1 |
|
elif 'control' in value: |
|
return 0 |
|
return None |
|
|
|
|
|
convert_age = None |
|
|
|
|
|
convert_gender = None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
_ = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_features = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
print("Preview of extracted clinical features:") |
|
print(preview_df(clinical_features)) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
requires_gene_mapping = True |
|
|
|
import gzip |
|
|
|
|
|
platform_start = False |
|
data_preview = [] |
|
with gzip.open(soft_file, 'rt', encoding='utf-8') as f: |
|
for line in f: |
|
if line.startswith('^PLATFORM'): |
|
platform_start = True |
|
continue |
|
if platform_start and len(data_preview) < 20: |
|
data_preview.append(line.strip()) |
|
|
|
print("Platform annotation preview:") |
|
print("\n".join(data_preview)) |
|
print("\n" + "="*80 + "\n") |
|
|
|
|
|
prefixes = ['!Platform_table_begin'] |
|
gene_annotation = get_gene_annotation(soft_file, prefixes) |
|
|
|
|
|
print("Gene annotation shape:", gene_annotation.shape) |
|
print("\nGene annotation columns and first few rows:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
columns = gene_annotation.columns.tolist() |
|
print("\nAll columns:", columns) |
|
for col in columns: |
|
non_null = gene_annotation[col].notna().sum() |
|
if non_null > 0: |
|
print(f"\nColumn '{col}' has {non_null} non-null values") |
|
print("Sample values:", gene_annotation[col].dropna().head().tolist()) |
|
|
|
with gzip.open(soft_file, 'rt', encoding='utf-8') as f: |
|
content = f.read() |
|
table_start = content.find('!Platform_table_begin') |
|
table_end = content.find('!Platform_table_end') |
|
table_content = content[table_start:table_end] |
|
|
|
|
|
gene_annotation = pd.read_csv(io.StringIO(table_content), sep='\t', skiprows=1) |
|
|
|
|
|
print("Column names in gene annotation:") |
|
print(gene_annotation.columns.tolist()) |
|
print("\nPreview of gene annotation data:") |
|
print(gene_annotation.head()) |
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL') |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
|
|
|
|
print("\nShape of mapped gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of mapped gene data:") |
|
print(gene_data.head()) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
with gzip.open(soft_file, 'rt') as f: |
|
content = f.read() |
|
|
|
platform_start = content.find('^PLATFORM') |
|
|
|
table_start = content.find('!Platform_table_begin', platform_start) |
|
table_end = content.find('!Platform_table_end', table_start) |
|
|
|
if table_start != -1 and table_end != -1: |
|
|
|
table_content = content[content.find('\n', table_start):table_end] |
|
gene_annotation = pd.read_csv(io.StringIO(table_content), sep='\t') |
|
|
|
print("Gene annotation shape:", gene_annotation.shape) |
|
print("\nGene annotation columns and first few rows:") |
|
print(gene_annotation.head()) |
|
print("\nColumn names:") |
|
print(gene_annotation.columns.tolist()) |
|
|
|
|
|
for col in gene_annotation.columns: |
|
non_null = gene_annotation[col].notna().sum() |
|
if non_null > 0: |
|
print(f"\nColumn '{col}' has {non_null} non-null values") |
|
print("Sample values:", gene_annotation[col].dropna().head().tolist()) |
|
else: |
|
print("Platform table markers not found in file") |
|
|
|
platform_section = '' |
|
table_content = '' |
|
inside_platform = False |
|
inside_table = False |
|
|
|
with gzip.open(soft_file, 'rt') as f: |
|
for line in f: |
|
if line.startswith('^PLATFORM'): |
|
inside_platform = True |
|
elif line.startswith('!Platform_table_begin') and inside_platform: |
|
inside_table = True |
|
continue |
|
elif line.startswith('!Platform_table_end'): |
|
break |
|
elif inside_table: |
|
table_content += line |
|
elif inside_platform: |
|
platform_section += line |
|
|
|
|
|
gene_annotation = pd.read_csv(io.StringIO(table_content), sep='\t') |
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL') |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note="Gene expression study comparing hypertensive patients with/without left ventricular remodeling" |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation shape:", gene_annotation.shape) |
|
print("\nGene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
print("\nNumber of non-null values in each column:") |
|
print(gene_annotation.count()) |
|
|
|
|
|
print("\nSample rows with non-null gene symbols:") |
|
non_null_genes = gene_annotation[gene_annotation['GENE_SYMBOL'].notna()] |
|
print(preview_df(non_null_genes)) |
|
|
|
|
|
print("\nNumber of unique values:") |
|
print("Unique IDs:", gene_annotation['ID'].nunique()) |
|
if 'GENE_SYMBOL' in gene_annotation.columns: |
|
print("Unique gene symbols:", gene_annotation['GENE_SYMBOL'].dropna().nunique()) |
|
|
|
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL') |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
|
|
|
|
print("\nShape of mapped gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of mapped gene data:") |
|
print(gene_data.head()) |
|
|
|
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0) |
|
gene_data.index = gene_data.index.str.replace('-mRNA', '') |
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note="Study comparing transcriptional profiles between idiopathic non-cirrhotic portal hypertension patients, cirrhosis patients, and normal controls" |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |