|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Insomnia" |
|
cohort = "GSE208668" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Insomnia" |
|
in_cohort_dir = "../DATA/GEO/Insomnia/GSE208668" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Insomnia/GSE208668.csv" |
|
out_gene_data_file = "./output/preprocess/3/Insomnia/gene_data/GSE208668.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Insomnia/clinical_data/GSE208668.csv" |
|
json_path = "./output/preprocess/3/Insomnia/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 0 |
|
age_row = 1 |
|
gender_row = 2 |
|
|
|
|
|
def convert_trait(value: str) -> Optional[int]: |
|
if not isinstance(value, str): |
|
return None |
|
value = value.lower().split(": ")[-1].strip() |
|
if value == "yes": |
|
return 1 |
|
elif value == "no": |
|
return 0 |
|
return None |
|
|
|
def convert_age(value: str) -> Optional[float]: |
|
if not isinstance(value, str): |
|
return None |
|
try: |
|
age = float(value.split(": ")[-1].strip()) |
|
return age |
|
except: |
|
return None |
|
|
|
def convert_gender(value: str) -> Optional[int]: |
|
if not isinstance(value, str): |
|
return None |
|
value = value.lower().split(": ")[-1].strip() |
|
if value == "female": |
|
return 0 |
|
elif value == "male": |
|
return 1 |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
initial_validation = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
preview = preview_df(selected_clinical) |
|
print("Preview of processed clinical data:") |
|
print(preview) |
|
|
|
|
|
selected_clinical.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 row IDs:") |
|
print(genetic_data.index[:20].tolist()) |
|
requires_gene_mapping = False |
|
|
|
genetic_data = normalize_gene_symbols_in_index(genetic_data) |
|
genetic_data.to_csv(out_gene_data_file) |
|
|
|
|
|
clinical_features = geo_select_clinical_features( |
|
clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Dataset contains genome-wide transcriptional profiling of PBMCs from older adults with and without insomnia disorder." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |