Liu-Hy's picture
Add files using upload-large-folder tool
0a0878d verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Insomnia"
cohort = "GSE208668"
# Input paths
in_trait_dir = "../DATA/GEO/Insomnia"
in_cohort_dir = "../DATA/GEO/Insomnia/GSE208668"
# Output paths
out_data_file = "./output/preprocess/3/Insomnia/GSE208668.csv"
out_gene_data_file = "./output/preprocess/3/Insomnia/gene_data/GSE208668.csv"
out_clinical_data_file = "./output/preprocess/3/Insomnia/clinical_data/GSE208668.csv"
json_path = "./output/preprocess/3/Insomnia/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# From background info, it's genome-wide transcriptional profiling of PBMCs
# Though raw data was lost, it's still gene expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 0 # 'insomnia' is in row 0
age_row = 1 # 'age' is in row 1
gender_row = 2 # 'gender' is in row 2
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
if not isinstance(value, str):
return None
value = value.lower().split(": ")[-1].strip()
if value == "yes":
return 1
elif value == "no":
return 0
return None
def convert_age(value: str) -> Optional[float]:
if not isinstance(value, str):
return None
try:
age = float(value.split(": ")[-1].strip())
return age
except:
return None
def convert_gender(value: str) -> Optional[int]:
if not isinstance(value, str):
return None
value = value.lower().split(": ")[-1].strip()
if value == "female":
return 0
elif value == "male":
return 1
return None
# 3. Save Metadata - Initial Filtering
is_trait_available = trait_row is not None
initial_validation = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed data
preview = preview_df(selected_clinical)
print("Preview of processed clinical data:")
print(preview)
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
requires_gene_mapping = False # The gene identifiers are already in human gene symbol format. No mapping needed.
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(genetic_data)
genetic_data.to_csv(out_gene_data_file)
# Get clinical features
clinical_features = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "Dataset contains genome-wide transcriptional profiling of PBMCs from older adults with and without insomnia disorder."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)