|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Kidney_Chromophobe" |
|
cohort = "GSE19949" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Kidney_Chromophobe" |
|
in_cohort_dir = "../DATA/GEO/Kidney_Chromophobe/GSE19949" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Kidney_Chromophobe/GSE19949.csv" |
|
out_gene_data_file = "./output/preprocess/3/Kidney_Chromophobe/gene_data/GSE19949.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Kidney_Chromophobe/clinical_data/GSE19949.csv" |
|
json_path = "./output/preprocess/3/Kidney_Chromophobe/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = 4 |
|
gender_row = 6 |
|
age_row = None |
|
|
|
|
|
def convert_trait(x): |
|
if pd.isna(x): |
|
return None |
|
val = x.split(': ')[-1].lower() |
|
if 'chromophobe' in val: |
|
return 1 |
|
elif 'renal cell carcinoma' in val or 'adenocarcinoma' in val: |
|
return 0 |
|
return None |
|
|
|
def convert_gender(x): |
|
if pd.isna(x): |
|
return None |
|
val = x.split(': ')[-1].lower() |
|
if 'female' in val: |
|
return 0 |
|
elif 'male' in val: |
|
return 1 |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
print("Preview of extracted clinical features:") |
|
print(preview_df(selected_clinical_df)) |
|
|
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 row IDs:") |
|
print(genetic_data.index[:20].tolist()) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file_path) |
|
|
|
|
|
print("Column names:") |
|
print(gene_metadata.columns.tolist()) |
|
|
|
|
|
print("\nData shape:", gene_metadata.shape) |
|
|
|
|
|
print("\nPreview of the annotation data:") |
|
print(json.dumps(preview_df(gene_metadata), indent=2)) |
|
|
|
|
|
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_data) |
|
|
|
|
|
print("Gene expression data shape after mapping:", gene_data.shape) |
|
print("\nFirst 10 gene symbols:") |
|
print(gene_data.index[:10].tolist()) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
if linked_data[trait].isna().all(): |
|
is_biased = True |
|
linked_data = None |
|
else: |
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples of kidney chromophobe tumors and normal tissues." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |