Liu-Hy's picture
Add files using upload-large-folder tool
f811ee7 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Kidney_Clear_Cell_Carcinoma"
cohort = "GSE106757"
# Input paths
in_trait_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma"
in_cohort_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma/GSE106757"
# Output paths
out_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/GSE106757.csv"
out_gene_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/gene_data/GSE106757.csv"
out_clinical_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE106757.csv"
json_path = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# Gene Expression Data Availability
is_gene_available = True # Yes, the study involves transcriptional analysis of monocytes
# Variable Availability and Data Type Conversion
trait_row = 0 # The trait (disease state) is in row 0
age_row = None # Age not available
gender_row = None # Gender not available
def convert_trait(value: str) -> Optional[int]:
"""Convert disease state to binary: 0 for healthy, 1 for renal cell carcinoma"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if 'healthy' in value:
return 0
elif 'renal cell carcinoma' in value or 'rcc' in value:
return 1
return None
convert_age = None # Age data not available
convert_gender = None # Gender data not available
# Initial validation and saving metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# Clinical feature extraction since trait_row is not None
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait
)
# Preview and save clinical features
print("Clinical Features Preview:")
print(preview_df(clinical_features))
# Save clinical data
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# These appear to be standard HGNC gene symbols mixed with some older identifiers
# Most identifiers like A1BG, A2M, AAAS are valid HGNC symbols
# However, some like 7A5, AAA1 are likely older or alternative identifiers
# Therefore mapping to current HGNC symbols would be beneficial for standardization
requires_gene_mapping = True
# First inspect if there's a platform section in the SOFT file
with gzip.open(soft_file_path, 'rt') as f:
# Search for lines containing platform annotation
for line in f:
if line.startswith('^PLATFORM'):
print("Found platform section:")
# Print next 20 lines to understand the structure
print('\n'.join([next(f).strip() for _ in range(20)]))
break
# Then extract gene annotation using the library function
gene_metadata = get_gene_annotation(soft_file_path)
print("\nGene annotation data shape:", gene_metadata.shape)
print("\nColumns:", gene_metadata.columns.tolist())
print("\nPreview:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Since annotation mapping failed, directly normalize the gene symbols
gene_data = normalize_gene_symbols_in_index(genetic_data)
# Print preview of gene data
print("Gene data shape:", gene_data.shape)
print("\nFirst few gene symbols:")
print(gene_data.index[:10].tolist())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Early exit if trait values are all NaN
if linked_data[trait].isna().all():
is_biased = True
linked_data = None
else:
# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "This dataset contains gene expression data from blood monocyte subsets comparing renal cell carcinoma patients with healthy donors."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)