Liu-Hy's picture
Add files using upload-large-folder tool
f811ee7 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Kidney_Clear_Cell_Carcinoma"
cohort = "GSE117230"
# Input paths
in_trait_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma"
in_cohort_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma/GSE117230"
# Output paths
out_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/GSE117230.csv"
out_gene_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/gene_data/GSE117230.csv"
out_clinical_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE117230.csv"
json_path = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Yes, this dataset contains transcriptional profiling data per background info
is_gene_available = True
# 2. Variable Analysis
# 2.1 Data Availability
# Trait: disease state from row 0 distinguishes ccRCC patients vs healthy controls
trait_row = 0
# Age is not available in sample characteristics
age_row = None
# Gender is not available in sample characteristics
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert disease state to binary: 0 for healthy control, 1 for ccRCC"""
if not isinstance(value, str):
return None
value = value.split(': ')[-1].lower()
if 'ccrcc patient' in value:
return 1
elif 'healthy control' in value:
return 0
return None
def convert_age(value: str) -> float:
"""Convert age to float"""
return None # Not used since age not available
def convert_gender(value: str) -> int:
"""Convert gender to binary"""
return None # Not used since gender not available
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract Clinical Features
# Since trait_row is not None, we need to extract clinical features
clinical_df = geo_select_clinical_features(clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the extracted features
print("Preview of clinical features:")
print(preview_df(clinical_df))
# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# The identifiers appear to be probeset IDs (ending in '_st')
# rather than standard human gene symbols like 'BRCA1', 'TP53', etc.
# These will need to be mapped to official gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
# Look at general data statistics
print("\nData shape:", gene_metadata.shape)
# Preview the first few rows
print("\nPreview of the annotation data:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Find probe IDs and gene symbols in annotation data
# The gene expression data uses probeset_id format, which matches the 'ID' column in annotations
# Gene symbols are in gene_assignment column with format "RefSeq // Gene Symbol // Description"
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
# Convert the gene assignment strings to gene symbols
def extract_gene(assignment):
if pd.isna(assignment):
return []
# Split by gene name separator '//' and look for entries that appear to be gene symbols
genes = []
parts = assignment.split('//')
for part in parts:
genes.extend(extract_human_gene_symbols(part))
return genes
# Get the gene mapping and apply it to convert probe expression to gene expression
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Print preview of the gene data
print("Preview of mapped gene expression data:")
print(preview_df(gene_data))
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Early exit if trait values are all NaN
if linked_data[trait].isna().all():
is_biased = True
linked_data = None
else:
# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "Dataset from gene expression microarray profiling of proximal tubule cells from African American individuals, comparing samples with different APOL1 genotypes."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)