Liu-Hy's picture
Add files using upload-large-folder tool
7623c74 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Large_B-cell_Lymphoma"
cohort = "GSE156309"
# Input paths
in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma"
in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE156309"
# Output paths
out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE156309.csv"
out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE156309.csv"
out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE156309.csv"
json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json"
# Get file paths for soft and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each clinical feature row
clinical_features = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print(background_info)
print("\nClinical Features and Sample Values:")
print(json.dumps(clinical_features, indent=2))
# 1. Gene Expression Data Availability
is_gene_available = True # Using Affymetrix Human U133 Plus 2.0 microarrays for mRNA expression
# 2.1 Data Availability
trait_row = 3 # 'disease status' indicates relapse status
age_row = 0 # Age information is available
gender_row = None # No gender information available
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert relapse status to binary (0: relapse-free, 1: relapse)"""
if not isinstance(value, str):
return None
value = value.split(': ')[-1].lower()
if value == 'relapse-free':
return 0
elif value == 'relapse':
return 1
return None
def convert_age(value: str) -> float:
"""Convert age to continuous numeric value"""
if not isinstance(value, str):
return None
try:
age = float(value.split(': ')[-1])
return age
except:
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary (0: female, 1: male)"""
# Not used since gender data is unavailable
return None
# 3. Save Metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed data
print(preview_df(selected_clinical_df))
# Save clinical features
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file)
# Print DataFrame info and dimensions to verify data structure
print("DataFrame info:")
print(genetic_data.info())
print("\nDataFrame dimensions:", genetic_data.shape)
# Print an excerpt of the data to inspect row/column structure
print("\nFirst few rows and columns of data:")
print(genetic_data.head().iloc[:, :5])
# Print first 20 row IDs
print("\nFirst 20 gene/probe IDs:")
print(genetic_data.index[:20].tolist())
# These appear to be Affymetrix probe IDs (e.g. "1007_s_at", "AFFX-TrpnX-M_at")
# rather than standard human gene symbols, so they will need to be mapped
requires_gene_mapping = True
# Report discovery of missing gene annotation
print("Gene Annotation Analysis:")
print("WARNING: Gene probe-to-symbol mapping information is not available in this SOFT file.")
print("The annotation only contains signature names (e.g. TIS.IO360, APM.IO360) rather than human gene symbols.")
# Update validation info to show dataset cannot be used due to missing gene mapping
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=False, # Set to False since gene expression data is not mappable
is_trait_available=trait_row is not None,
note="Dataset contains numeric probe IDs but lacks gene symbol mapping information"
)