|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Liver_Cancer" |
|
cohort = "GSE178201" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Liver_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE178201" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Liver_Cancer/GSE178201.csv" |
|
out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE178201.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE178201.csv" |
|
json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
clinical_features = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nClinical Features and Sample Values:") |
|
print(json.dumps(clinical_features, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = None |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
|
|
def convert_trait(x): |
|
return None |
|
|
|
def convert_age(x): |
|
return None |
|
|
|
def convert_gender(x): |
|
return None |
|
|
|
|
|
|
|
_ = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=False |
|
) |
|
|
|
|
|
|
|
|
|
genetic_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("DataFrame info:") |
|
print(genetic_data.info()) |
|
print("\nDataFrame dimensions:", genetic_data.shape) |
|
|
|
|
|
print("\nFirst few rows and columns of data:") |
|
print(genetic_data.head().iloc[:, :5]) |
|
|
|
|
|
print("\nFirst 20 gene/probe IDs:") |
|
print(genetic_data.index[:20].tolist()) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene Annotation Preview:") |
|
print("\nColumns:", gene_annotation.columns.tolist()) |
|
preview = preview_df(gene_annotation) |
|
print(json.dumps(preview, indent=2)) |
|
|
|
|
|
prob_col = 'ID' |
|
gene_col = 'pr_gene_symbol' |
|
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col) |
|
|
|
|
|
print("\nGene Mapping Preview:") |
|
mapping_preview = preview_df(mapping_df) |
|
print(json.dumps(mapping_preview, indent=2)) |
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_df) |
|
|
|
|
|
print("Gene Expression Data After Mapping:") |
|
print("\nDataFrame info:") |
|
print(gene_data.info()) |
|
print("\nDataFrame dimensions:", gene_data.shape) |
|
print("\nFirst few rows and columns:") |
|
print(gene_data.head().iloc[:, :5]) |
|
print("\nFirst 20 gene symbols:") |
|
print(gene_data.index[:20].tolist()) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
mock_df = pd.DataFrame({ |
|
trait: [0,1], |
|
'GENE1': [0,0] |
|
}) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=True, |
|
df=mock_df, |
|
note="Cell line data without clinical trait information - not suitable for trait association analysis" |
|
) |
|
|
|
|