Liu-Hy's picture
Add files using upload-large-folder tool
7623c74 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Liver_Cancer"
cohort = "GSE228783"
# Input paths
in_trait_dir = "../DATA/GEO/Liver_Cancer"
in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE228783"
# Output paths
out_data_file = "./output/preprocess/3/Liver_Cancer/GSE228783.csv"
out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE228783.csv"
out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE228783.csv"
json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json"
# Get file paths for soft and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each clinical feature row
clinical_features = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print(background_info)
print("\nClinical Features and Sample Values:")
print(json.dumps(clinical_features, indent=2))
# 1. Gene Expression Data Availability
# Yes, this appears to be a gene expression dataset studying liver tissue,
# not purely miRNA or methylation
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# trait: Can be inferred from 'disease' field showing cancer types
trait_row = 2
# Age and gender not available in characteristics
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value):
if not value or 'disease:' not in value:
return None
value = value.split('disease:')[1].strip().lower()
# Convert cancer types to binary - 1 for liver cancer (HCC), 0 for others
if 'hcc' in value:
return 1
return 0
def convert_age(value):
# Not used since age data not available
return None
def convert_gender(value):
# Not used since gender data not available
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
# Since trait_row is not None, extract clinical features
clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the extracted features
preview = preview_df(clinical_features)
print("Preview of clinical features:")
print(preview)
# Save clinical data
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file)
# Print DataFrame info and dimensions to verify data structure
print("DataFrame info:")
print(genetic_data.info())
print("\nDataFrame dimensions:", genetic_data.shape)
# Print an excerpt of the data to inspect row/column structure
print("\nFirst few rows and columns of data:")
print(genetic_data.head().iloc[:, :5])
# Print first 20 row IDs
print("\nFirst 20 gene/probe IDs:")
print(genetic_data.index[:20].tolist())
# Observe the format of gene identifiers: they are probe IDs from an older version of the Affymetrix array platform
# These probe IDs (e.g. "11715100_at") need to be mapped to human gene symbols for downstream analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file)
# Identify mapping columns
prob_col = 'ID' # Column containing probe IDs
gene_col = 'Gene Symbol' # Column containing gene symbols
# Get mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
# Preview the mapping data structure
print("Gene Mapping Preview:")
preview = preview_df(mapping_df)
print(json.dumps(preview, indent=2))
# Apply gene mapping to convert probe expression into gene expression
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview gene expression data
print("\nGene Expression Data Preview:")
preview = preview_df(gene_data)
print(json.dumps(preview, indent=2))
# Save gene data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# Debug print to check data before handling missing values
print("\nPreview of linked data before handling missing values:")
print(linked_data.head())
# 3. Handle missing values
linked_data = handle_missing_values(df=linked_data, trait_col=trait)
print("\nPreview of linked data after handling missing values:")
print(linked_data.head())
# 4. Check for biases and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate dataset quality and save metadata
note = ""
if is_biased:
note = "The trait distribution is severely biased."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)