Liu-Hy's picture
Add files using upload-large-folder tool
7623c74 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Liver_Cancer"
cohort = "GSE66843"
# Input paths
in_trait_dir = "../DATA/GEO/Liver_Cancer"
in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE66843"
# Output paths
out_data_file = "./output/preprocess/3/Liver_Cancer/GSE66843.csv"
out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE66843.csv"
out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE66843.csv"
json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json"
# Get file paths for soft and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each clinical feature row
clinical_features = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print(background_info)
print("\nClinical Features and Sample Values:")
print(json.dumps(clinical_features, indent=2))
# 1. Gene Expression Data Availability
# This appears to be an in-vitro cell line study with Huh7.5.1 cells infected with HCV
# It's likely to contain gene expression data measuring transcriptional changes
is_gene_available = True
# 2.1 Data Availability
# trait: binary infected vs control status can be determined from infection status in row 1
trait_row = 1
# age: not applicable for cell line data
age_row = None
# gender: not applicable for cell line data
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value):
# Extract value after colon
if ':' in str(value):
value = value.split(':')[1].strip()
# Mock infection (control) = 0, HCV infection = 1
if 'Mock' in value or 'control' in value:
return 0
elif 'HCV' in value:
return 1
return None
def convert_age(value):
return None # Not used
def convert_gender(value):
return None # Not used
# 3. Save metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract clinical features
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
print("Preview of selected clinical features:")
print(preview_df(selected_clinical_df))
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file)
# Print DataFrame info and dimensions to verify data structure
print("DataFrame info:")
print(genetic_data.info())
print("\nDataFrame dimensions:", genetic_data.shape)
# Print an excerpt of the data to inspect row/column structure
print("\nFirst few rows and columns of data:")
print(genetic_data.head().iloc[:, :5])
# Print first 20 row IDs
print("\nFirst 20 gene/probe IDs:")
print(genetic_data.index[:20].tolist())
# The index shows ILMN_ prefixes which indicates these are Illumina probe IDs
# These need to be mapped to standard human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file)
# Preview the annotation data structure
print("Gene Annotation Preview:")
preview = preview_df(gene_annotation)
print(json.dumps(preview, indent=2))
print("\nGene Annotation Analysis:")
print("WARNING: Gene probe-to-symbol mapping information is not available in this SOFT file.")
print("The annotation only contains signature names (e.g. TIS.IO360, APM.IO360) rather than human gene symbols.")
# Update validation info to show dataset cannot be used due to missing gene mapping
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=False, # Set to False since gene expression data is not mappable
is_trait_available=trait_row is not None,
note="Dataset contains numeric probe IDs but lacks gene symbol mapping information"
)