|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Lower_Grade_Glioma" |
|
cohort = "GSE24072" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Lower_Grade_Glioma" |
|
in_cohort_dir = "../DATA/GEO/Lower_Grade_Glioma/GSE24072" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Lower_Grade_Glioma/GSE24072.csv" |
|
out_gene_data_file = "./output/preprocess/3/Lower_Grade_Glioma/gene_data/GSE24072.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Lower_Grade_Glioma/clinical_data/GSE24072.csv" |
|
json_path = "./output/preprocess/3/Lower_Grade_Glioma/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print("-" * 80) |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
print("-" * 80) |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 2 |
|
|
|
age_row = 1 |
|
|
|
gender_row = 0 |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert glioma grade to binary (0 for grade III, 1 for grade IV/V)""" |
|
if pd.isna(value) or not isinstance(value, str): |
|
return None |
|
value = value.split(": ")[-1].lower() |
|
if "grade iii" in value: |
|
return 0 |
|
elif "grade iv" in value or "grade v" in value: |
|
return 1 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
"""Convert age string to float""" |
|
if pd.isna(value) or not isinstance(value, str): |
|
return None |
|
try: |
|
age = float(value.split(": ")[-1]) |
|
return age |
|
except: |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Convert gender to binary (0 for female, 1 for male)""" |
|
if pd.isna(value) or not isinstance(value, str): |
|
return None |
|
value = value.split(": ")[-1].lower() |
|
if value == "female": |
|
return 0 |
|
elif value == "male": |
|
return 1 |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender) |
|
|
|
print("Preview of extracted clinical features:") |
|
print(preview_df(selected_clinical_df)) |
|
|
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 gene/probe identifiers:") |
|
print(genetic_data.index[:20]) |
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
print("Column names and first few values in gene annotation data:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
print("\nPreview of rows 100-105:") |
|
print(preview_df(gene_annotation.iloc[100:105])) |
|
|
|
|
|
probe_col = 'ID' |
|
gene_col = 'Gene Symbol' |
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_col) |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_df) |
|
|
|
print("Shape of gene expression data after mapping:", gene_data.shape) |
|
print("\nFirst few gene symbols after mapping:") |
|
print(gene_data.index[:5]) |
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note="Dataset contains gene expression data for gliomas. Trait is based on glioma grade (III vs IV/V)." |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |