|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Melanoma" |
|
cohort = "GSE146264" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Melanoma" |
|
in_cohort_dir = "../DATA/GEO/Melanoma/GSE146264" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Melanoma/GSE146264.csv" |
|
out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE146264.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE146264.csv" |
|
json_path = "./output/preprocess/3/Melanoma/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
for feature, values in unique_values_dict.items(): |
|
print(f"\n{feature}:") |
|
print(values) |
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = 1 |
|
age_row = None |
|
gender_row = None |
|
|
|
def convert_trait(x: str) -> int: |
|
"""Convert subject ID to binary trait status |
|
P = patient = 1, C = control = 0""" |
|
if not x or ':' not in x: |
|
return None |
|
val = x.split(':')[1].strip() |
|
if val.startswith('P'): |
|
return 1 |
|
elif val.startswith('C'): |
|
return 0 |
|
return None |
|
|
|
def convert_age(x: str) -> float: |
|
"""Convert age string to float""" |
|
return None |
|
|
|
def convert_gender(x: str) -> int: |
|
"""Convert gender string to binary""" |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
preview = preview_df(selected_clinical_df) |
|
print("Preview of processed clinical data:") |
|
print(preview) |
|
|
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
markers = ["!series_matrix_table_begin", "!series_matrix_table_begin\t", "!dataset_table_begin"] |
|
|
|
for marker in markers: |
|
genetic_data = get_genetic_data(matrix_file_path, marker=marker) |
|
if not genetic_data.empty: |
|
break |
|
|
|
if genetic_data.empty: |
|
print("Warning: No genetic data was extracted from the matrix file.") |
|
is_gene_available = False |
|
else: |
|
|
|
print("First 20 row IDs:") |
|
print(list(genetic_data.index)[:20]) |
|
is_gene_available = True |
|
|
|
genetic_data.to_csv(out_gene_data_file) |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |
|
|
|
with gzip.open(matrix_file_path, 'rt') as f: |
|
print("First 10 lines of matrix file:") |
|
for i, line in enumerate(f): |
|
if i < 10: |
|
print(line.strip()) |
|
else: |
|
break |
|
|
|
|
|
try: |
|
genetic_data = pd.read_csv(matrix_file_path, compression='gzip', sep='\t', comment='!', |
|
low_memory=False) |
|
print("\nLoaded data shape:", genetic_data.shape) |
|
if not genetic_data.empty: |
|
if 'ID_REF' in genetic_data.columns: |
|
genetic_data = genetic_data.rename(columns={'ID_REF': 'ID'}) |
|
genetic_data = genetic_data.set_index(genetic_data.columns[0]) |
|
|
|
print("\nFirst 20 row IDs:") |
|
print(list(genetic_data.index)[:20]) |
|
genetic_data.to_csv(out_gene_data_file) |
|
is_gene_available = True |
|
else: |
|
print("Warning: No genetic data was extracted from the matrix file.") |
|
is_gene_available = False |
|
|
|
except Exception as e: |
|
print(f"Error extracting genetic data: {str(e)}") |
|
is_gene_available = False |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |
|
requires_gene_mapping = False |
|
|
|
with gzip.open(soft_file_path, 'rt') as f: |
|
print("First 20 lines of SOFT file:") |
|
|
|
data_lines = [] |
|
for i, line in enumerate(f): |
|
if i < 20: |
|
print(line.strip()) |
|
if not any(line.startswith(p) for p in ['^', '!', '#']): |
|
data_lines.append(line) |
|
if len(data_lines) >= 5: |
|
break |
|
|
|
|
|
try: |
|
with gzip.open(soft_file_path, 'rt') as f: |
|
data_lines = [] |
|
for line in f: |
|
if not any(line.startswith(p) for p in ['^', '!', '#']): |
|
data_lines.append(line) |
|
|
|
if data_lines: |
|
gene_metadata = pd.read_csv(io.StringIO(''.join(data_lines)), sep='\t', |
|
low_memory=False) |
|
print("\nLoaded data shape:", gene_metadata.shape) |
|
|
|
preview = preview_df(gene_metadata) |
|
print("\nGene annotation columns and sample values:") |
|
print(preview) |
|
else: |
|
print("Warning: No gene annotation data was found in the SOFT file.") |
|
|
|
except Exception as e: |
|
print(f"Error extracting gene annotation data: {str(e)}") |
|
|
|
if 'genetic_data' not in locals() or genetic_data.empty: |
|
print("No valid gene expression data available. Skipping data integration.") |
|
|
|
minimal_df = pd.DataFrame({'Failed': [1]}) |
|
validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=False, |
|
is_trait_available=True, |
|
is_biased=True, |
|
df=minimal_df, |
|
note="Failed to extract gene expression data from matrix file." |
|
) |
|
else: |
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(genetic_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) |
|
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Gene expression data from melanoma patients receiving PD-1 immunotherapy, with long-term benefit as outcome." |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |