Liu-Hy's picture
Add files using upload-large-folder tool
1f52ac2 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Melanoma"
cohort = "GSE146264"
# Input paths
in_trait_dir = "../DATA/GEO/Melanoma"
in_cohort_dir = "../DATA/GEO/Melanoma/GSE146264"
# Output paths
out_data_file = "./output/preprocess/3/Melanoma/GSE146264.csv"
out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE146264.csv"
out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE146264.csv"
json_path = "./output/preprocess/3/Melanoma/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene expression data availability
is_gene_available = True # This is an scRNA-seq dataset for CD8+ T cells
# 2. Clinical data availability and conversion
trait_row = 1 # subjectid indicates disease status (P for psoriasis patients, C for controls)
age_row = None # Age data not available
gender_row = None # Gender data not available
def convert_trait(x: str) -> int:
"""Convert subject ID to binary trait status
P = patient = 1, C = control = 0"""
if not x or ':' not in x:
return None
val = x.split(':')[1].strip()
if val.startswith('P'): # Patient
return 1
elif val.startswith('C'): # Control
return 0
return None
def convert_age(x: str) -> float:
"""Convert age string to float"""
return None # Not used since age_row is None
def convert_gender(x: str) -> int:
"""Convert gender string to binary"""
return None # Not used since gender_row is None
# 3. Save initial metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract clinical features
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
preview = preview_df(selected_clinical_df)
print("Preview of processed clinical data:")
print(preview)
# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Try different markers for gene data extraction
markers = ["!series_matrix_table_begin", "!series_matrix_table_begin\t", "!dataset_table_begin"]
for marker in markers:
genetic_data = get_genetic_data(matrix_file_path, marker=marker)
if not genetic_data.empty:
break
if genetic_data.empty:
print("Warning: No genetic data was extracted from the matrix file.")
is_gene_available = False
else:
# Print first 20 row IDs to examine data type
print("First 20 row IDs:")
print(list(genetic_data.index)[:20])
is_gene_available = True
# Only save if data was successfully extracted
genetic_data.to_csv(out_gene_data_file)
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Peek at file structure
with gzip.open(matrix_file_path, 'rt') as f:
print("First 10 lines of matrix file:")
for i, line in enumerate(f):
if i < 10:
print(line.strip())
else:
break
# First try reading as tab-delimited without seeking markers
try:
genetic_data = pd.read_csv(matrix_file_path, compression='gzip', sep='\t', comment='!',
low_memory=False)
print("\nLoaded data shape:", genetic_data.shape)
if not genetic_data.empty:
if 'ID_REF' in genetic_data.columns:
genetic_data = genetic_data.rename(columns={'ID_REF': 'ID'})
genetic_data = genetic_data.set_index(genetic_data.columns[0])
# Print first 20 row IDs to examine data type
print("\nFirst 20 row IDs:")
print(list(genetic_data.index)[:20])
genetic_data.to_csv(out_gene_data_file)
is_gene_available = True
else:
print("Warning: No genetic data was extracted from the matrix file.")
is_gene_available = False
except Exception as e:
print(f"Error extracting genetic data: {str(e)}")
is_gene_available = False
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
requires_gene_mapping = False
# First peek at SOFT file structure
with gzip.open(soft_file_path, 'rt') as f:
print("First 20 lines of SOFT file:")
# Store lines that don't start with ^, !, or #
data_lines = []
for i, line in enumerate(f):
if i < 20:
print(line.strip())
if not any(line.startswith(p) for p in ['^', '!', '#']):
data_lines.append(line)
if len(data_lines) >= 5: # Get first few data lines
break
# Manual parsing approach since file structure is non-standard
try:
with gzip.open(soft_file_path, 'rt') as f:
data_lines = []
for line in f:
if not any(line.startswith(p) for p in ['^', '!', '#']):
data_lines.append(line)
if data_lines:
gene_metadata = pd.read_csv(io.StringIO(''.join(data_lines)), sep='\t',
low_memory=False)
print("\nLoaded data shape:", gene_metadata.shape)
# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
else:
print("Warning: No gene annotation data was found in the SOFT file.")
except Exception as e:
print(f"Error extracting gene annotation data: {str(e)}")
# Check if we have valid gene expression data
if 'genetic_data' not in locals() or genetic_data.empty:
print("No valid gene expression data available. Skipping data integration.")
# Create minimal DataFrame to indicate failure
minimal_df = pd.DataFrame({'Failed': [1]})
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=False,
is_trait_available=True,
is_biased=True, # Set to True to indicate dataset is unusable
df=minimal_df,
note="Failed to extract gene expression data from matrix file."
)
else:
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(genetic_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Gene expression data from melanoma patients receiving PD-1 immunotherapy, with long-term benefit as outcome."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)