Liu-Hy's picture
Add files using upload-large-folder tool
1f52ac2 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Mesothelioma"
cohort = "GSE117668"
# Input paths
in_trait_dir = "../DATA/GEO/Mesothelioma"
in_cohort_dir = "../DATA/GEO/Mesothelioma/GSE117668"
# Output paths
out_data_file = "./output/preprocess/3/Mesothelioma/GSE117668.csv"
out_gene_data_file = "./output/preprocess/3/Mesothelioma/gene_data/GSE117668.csv"
out_clinical_data_file = "./output/preprocess/3/Mesothelioma/clinical_data/GSE117668.csv"
json_path = "./output/preprocess/3/Mesothelioma/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Yes, this is a microarray study of gene expression data
is_gene_available = True
# 2.1 Data Availability
# For trait (mesothelioma status), available in row 1 (diagnosis)
trait_row = 1
# Age and gender not available in sample characteristics
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
"""Convert diagnosis to binary: 1 for mesothelioma, 0 for healthy"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if 'mesothelioma' in value:
return 1
elif 'healthy' in value:
return 0
return None
convert_age = None
convert_gender = None
# 3. Save metadata about data availability
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Extract clinical features
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted data
preview = preview_df(selected_clinical)
print("Preview of clinical data:")
print(preview)
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Looking at the gene identifiers, we see probe names like "100009613_at", "10000_at", etc
# These are Affymetrix probe IDs, not standard human gene symbols
# We need to map these probe IDs to gene symbols before further analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. Identify mapping columns:
# 'ID' in annotation matches probe IDs in expression data (e.g., "100009613_at")
# 'Description' contains gene names/descriptions
# 2. Get gene mapping dataframe
# The ID column already matches between annotation and expression data
mapping_data = gene_annotation[['ID', 'Description']].copy()
# Since Description contains full gene names, extract just the gene symbols
def extract_first_word(text):
"""Extract the first word before any special characters or spaces"""
if isinstance(text, str):
return text.split()[0]
return None
mapping_data['Gene'] = mapping_data['Description'].apply(extract_first_word)
mapping_data = mapping_data[['ID', 'Gene']]
# 3. Convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview results
print("Gene mapping preview:")
print(preview_df(mapping_data))
print("\nGene expression data preview:")
print(preview_df(gene_data))
print("\nShape:", gene_data.shape)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Dataset contains gene expression data from healthy cells and mesothelioma cell lines, suitable for case-control analysis."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)