|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Obesity" |
|
|
|
|
|
tcga_root_dir = "../DATA/TCGA" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Obesity/TCGA.csv" |
|
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/TCGA.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/TCGA.csv" |
|
json_path = "./output/preprocess/3/Obesity/cohort_info.json" |
|
|
|
|
|
cohort = "TCGA_Breast_Cancer_(BRCA)" |
|
cohort_dir = os.path.join(tcga_root_dir, cohort) |
|
|
|
|
|
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) |
|
|
|
|
|
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') |
|
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') |
|
|
|
|
|
print("Clinical data columns:") |
|
print(clinical_df.columns.tolist()) |
|
|
|
|
|
is_gene_available = len(genetic_df) > 0 |
|
is_trait_available = 'BMI' in clinical_df.columns or any('bmi' in col.lower() for col in clinical_df.columns) |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
candidate_age_cols = ["Age_at_Initial_Pathologic_Diagnosis_nature2012", "age_at_initial_pathologic_diagnosis"] |
|
candidate_gender_cols = ["Gender_nature2012", "gender"] |
|
|
|
|
|
|
|
age_preview = clinical_df[candidate_age_cols].head(5).to_dict(orient='list') |
|
print("Age columns preview:", age_preview) |
|
|
|
|
|
gender_preview = clinical_df[candidate_gender_cols].head(5).to_dict(orient='list') |
|
print("Gender columns preview:", gender_preview) |
|
|
|
age_col = "age_at_initial_pathologic_diagnosis" |
|
|
|
|
|
gender_col = "gender" |
|
|
|
|
|
print("Selected age column:", age_col) |
|
print("Selected gender column:", gender_col) |
|
|
|
|
|
sample_df = pd.DataFrame(index=genetic_df.columns) |
|
sample_df[trait] = -1 |
|
clinical_features = sample_df |
|
|
|
|
|
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) |
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
|
|
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
normalized_gene_df.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = pd.merge( |
|
clinical_features, |
|
normalized_gene_df.T, |
|
left_index=True, |
|
right_index=True, |
|
how='inner' |
|
) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Dataset contains gene expression data but lacks obesity/BMI information in clinical data. All samples marked with invalid trait values." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort="TCGA", |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|