Liu-Hy's picture
Add files using upload-large-folder tool
61e25af verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Obsessive-Compulsive_Disorder"
cohort = "GSE78104"
# Input paths
in_trait_dir = "../DATA/GEO/Obsessive-Compulsive_Disorder"
in_cohort_dir = "../DATA/GEO/Obsessive-Compulsive_Disorder/GSE78104"
# Output paths
out_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/GSE78104.csv"
out_gene_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/gene_data/GSE78104.csv"
out_clinical_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/clinical_data/GSE78104.csv"
json_path = "./output/preprocess/3/Obsessive-Compulsive_Disorder/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Yes, based on the Series title and design, this dataset contains mRNA expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 1 # disease state row contains trait info
age_row = 3 # age information available
gender_row = 2 # gender information available
# 2.2 Data Type Conversion Functions
def convert_trait(x):
# Binary: Convert OCD vs control
if not isinstance(x, str):
return None
value = x.split(': ')[-1].lower()
if 'obsessive-compulsive disorder' in value:
return 1
elif 'normal control' in value:
return 0
return None
def convert_age(x):
# Continuous: Extract age number
if not isinstance(x, str):
return None
value = x.split(': ')[-1].lower()
if 'y' in value:
try:
return int(value.replace('y',''))
except:
return None
return None
def convert_gender(x):
# Binary: Female=0, Male=1
if not isinstance(x, str):
return None
value = x.split(': ')[-1].lower()
if 'female' in value:
return 0
elif 'male' in value:
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the extracted features
print("Preview of selected clinical features:")
print(preview_df(selected_clinical))
# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Looking at the identifiers in the gene expression data, they appear to be Agilent probe IDs
# (starting with "A_19_") and control probes, not standard human gene symbols.
# Therefore we need to map them to gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. From observation:
# gene expression data uses probe IDs like "A_19_P00315459"
# gene annotation data has these IDs in the "ID" column
# gene symbols are in "GeneSymbol" column
# 2. Get gene mapping from annotation data
prob_col = 'ID'
gene_col = 'GeneSymbol'
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
# 3. Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview the result
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few genes and their expression values:")
print(gene_data.head())
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)