|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Obstructive_sleep_apnea" |
|
cohort = "GSE135917" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Obstructive_sleep_apnea" |
|
in_cohort_dir = "../DATA/GEO/Obstructive_sleep_apnea/GSE135917" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/GSE135917.csv" |
|
out_gene_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/gene_data/GSE135917.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/clinical_data/GSE135917.csv" |
|
json_path = "./output/preprocess/3/Obstructive_sleep_apnea/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
for row, values in unique_values_dict.items(): |
|
print(f"\n{row}:") |
|
print(values) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = None |
|
age_row = 0 |
|
gender_row = 1 |
|
|
|
|
|
def convert_trait(x): |
|
|
|
return None |
|
|
|
def convert_age(x): |
|
|
|
try: |
|
age = float(x.split(': ')[1]) |
|
return age |
|
except: |
|
return None |
|
|
|
def convert_gender(x): |
|
|
|
try: |
|
gender = x.split(': ')[1] |
|
if gender == 'F': |
|
return 0 |
|
elif gender == 'M': |
|
return 1 |
|
return None |
|
except: |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("Data structure and head:") |
|
print(genetic_data.head()) |
|
|
|
print("\nShape:", genetic_data.shape) |
|
|
|
print("\nFirst 20 row IDs (gene/probe identifiers):") |
|
print(list(genetic_data.index)[:20]) |
|
|
|
|
|
print("\nFirst 5 column names:") |
|
print(list(genetic_data.columns)[:5]) |
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
print("Column names:") |
|
print(gene_annotation.columns) |
|
|
|
print("\nPreview of gene annotation data:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_df) |
|
|
|
|
|
print("\nFirst few rows of mapped gene expression data:") |
|
print(gene_data.head()) |
|
print("\nShape of gene data:", gene_data.shape) |
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False |
|
) |