|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Osteoarthritis" |
|
cohort = "GSE107105" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Osteoarthritis" |
|
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE107105" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Osteoarthritis/GSE107105.csv" |
|
out_gene_data_file = "./output/preprocess/3/Osteoarthritis/gene_data/GSE107105.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Osteoarthritis/clinical_data/GSE107105.csv" |
|
json_path = "./output/preprocess/3/Osteoarthritis/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
for row, values in unique_values_dict.items(): |
|
print(f"\n{row}:") |
|
print(values) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 0 |
|
|
|
age_row = 1 |
|
|
|
gender_row = 2 |
|
|
|
|
|
def convert_trait(value): |
|
"""Convert disease status to binary (1 for OA, 0 for RA)""" |
|
if not value: |
|
return None |
|
value = value.split(': ')[-1].strip() |
|
if value == 'OA': |
|
return 1 |
|
elif value == 'RA': |
|
return 0 |
|
return None |
|
|
|
def convert_age(value): |
|
"""Convert age to continuous numeric value""" |
|
if not value: |
|
return None |
|
try: |
|
return float(value.split(': ')[-1].strip()) |
|
except: |
|
return None |
|
|
|
def convert_gender(value): |
|
"""Convert gender to binary (0 for Female, 1 for Male)""" |
|
if not value: |
|
return None |
|
value = value.split(': ')[-1].strip() |
|
if value.lower() == 'female': |
|
return 0 |
|
elif value.lower() == 'male': |
|
return 1 |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
_ = validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
preview = preview_df(selected_clinical) |
|
print("Preview of processed clinical data:") |
|
print(preview) |
|
|
|
|
|
selected_clinical.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("Data structure and head:") |
|
print(genetic_data.head()) |
|
|
|
print("\nShape:", genetic_data.shape) |
|
|
|
print("\nFirst 20 row IDs (gene/probe identifiers):") |
|
print(list(genetic_data.index)[:20]) |
|
|
|
|
|
print("\nFirst 5 column names:") |
|
print(list(genetic_data.columns)[:5]) |
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
print("Shape:", gene_annotation.shape) |
|
|
|
print("\nFirst few rows:") |
|
print(gene_annotation.head()) |
|
|
|
print("\nColumn names:") |
|
print(list(gene_annotation.columns)) |
|
|
|
print("\nUnique values in selected columns:") |
|
for col in gene_annotation.columns: |
|
uniq_vals = gene_annotation[col].drop_duplicates().head() |
|
print(f"\n{col}:") |
|
print(uniq_vals.tolist()) |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
print("Gene annotation columns:") |
|
print(gene_annotation.columns) |
|
|
|
print("\nFirst few rows:") |
|
print(gene_annotation.head()) |
|
|
|
|
|
probe_gene_map = pd.DataFrame() |
|
probe_gene_map['ID'] = gene_annotation['ID_REF'].astype(str) |
|
probe_gene_map['Gene'] = gene_annotation['GENE'].fillna('') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, probe_gene_map) |
|
|
|
print("\nGene mapping dataframe shape:", probe_gene_map.shape) |
|
print("\nFirst few rows of gene mapping:") |
|
print(probe_gene_map.head()) |
|
|
|
print("\nGene expression dataframe shape:", gene_data.shape) |
|
print("\nFirst few rows of gene expression data:") |
|
print(gene_data.head()) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
print("Data shape:", gene_annotation.shape) |
|
print("\nPreview of first few rows:") |
|
print(gene_annotation.head(3)) |
|
|
|
|
|
gene_annotation = gene_annotation[gene_annotation['ID'].notna()].copy() |
|
|
|
|
|
print("\nFirst few IDs:") |
|
print(gene_annotation['ID'].head()) |
|
|
|
|
|
potential_symbol_cols = [] |
|
for col in gene_annotation.columns: |
|
sample_vals = gene_annotation[col].dropna().astype(str).head() |
|
|
|
if any(val.isupper() and len(val) < 10 for val in sample_vals): |
|
potential_symbol_cols.append(col) |
|
print(f"\nPotential gene symbol column '{col}' values:") |
|
print(sample_vals) |
|
|
|
|
|
print("WARNING: Gene symbols are unavailable in the annotation data. Proceeding with probe-level analysis.") |
|
|
|
|
|
probe_data = genetic_data |
|
|
|
|
|
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) |
|
|
|
|
|
linked_data = pd.concat([selected_clinical_df, probe_data], axis=0).T |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Gene expression data from synovial fibroblasts, comparing osteoarthritis (OA) vs rheumatoid arthritis (RA). Analysis uses probe IDs since gene symbol mapping was unavailable." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
|
|
linked_data.to_csv(out_data_file) |
|
|
|
|
|
probe_data.to_csv(out_gene_data_file) |