Liu-Hy's picture
Add files using upload-large-folder tool
61e25af verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Osteoarthritis"
cohort = "GSE107105"
# Input paths
in_trait_dir = "../DATA/GEO/Osteoarthritis"
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE107105"
# Output paths
out_data_file = "./output/preprocess/3/Osteoarthritis/GSE107105.csv"
out_gene_data_file = "./output/preprocess/3/Osteoarthritis/gene_data/GSE107105.csv"
out_clinical_data_file = "./output/preprocess/3/Osteoarthritis/clinical_data/GSE107105.csv"
json_path = "./output/preprocess/3/Osteoarthritis/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Given it's a microarray analysis of gene expression, gene data is available
is_gene_available = True
# 2.1 Data Availability
# Trait is available in row 0 (disease)
trait_row = 0
# Age is available in row 1
age_row = 1
# Gender is available in row 2 (Sex)
gender_row = 2
# 2.2 Data Type Conversion
def convert_trait(value):
"""Convert disease status to binary (1 for OA, 0 for RA)"""
if not value:
return None
value = value.split(': ')[-1].strip()
if value == 'OA':
return 1
elif value == 'RA':
return 0
return None
def convert_age(value):
"""Convert age to continuous numeric value"""
if not value:
return None
try:
return float(value.split(': ')[-1].strip())
except:
return None
def convert_gender(value):
"""Convert gender to binary (0 for Female, 1 for Male)"""
if not value:
return None
value = value.split(': ')[-1].strip()
if value.lower() == 'female':
return 0
elif value.lower() == 'male':
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed data
preview = preview_df(selected_clinical)
print("Preview of processed clinical data:")
print(preview)
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The gene identifiers are numeric (16650001, etc.) which appear to be probe IDs
# from a microarray platform. These need to be mapped to human gene symbols.
requires_gene_mapping = True
# Extract gene annotation data from platform table
# First try the simple approach to see what columns we get
gene_annotation = get_gene_annotation(soft_file_path)
print("Shape:", gene_annotation.shape)
print("\nFirst few rows:")
print(gene_annotation.head())
print("\nColumn names:")
print(list(gene_annotation.columns))
print("\nUnique values in selected columns:")
for col in gene_annotation.columns:
uniq_vals = gene_annotation[col].drop_duplicates().head()
print(f"\n{col}:")
print(uniq_vals.tolist())
# Get gene annotation data with both markers for table boundaries
gene_annotation = get_gene_annotation(soft_file_path)
print("Gene annotation columns:")
print(gene_annotation.columns)
print("\nFirst few rows:")
print(gene_annotation.head())
# Create mapping dataframe with probe IDs and gene symbols
probe_gene_map = pd.DataFrame()
probe_gene_map['ID'] = gene_annotation['ID_REF'].astype(str)
probe_gene_map['Gene'] = gene_annotation['GENE'].fillna('')
# Apply the mapping to convert probe data to gene data
gene_data = apply_gene_mapping(genetic_data, probe_gene_map)
print("\nGene mapping dataframe shape:", probe_gene_map.shape)
print("\nFirst few rows of gene mapping:")
print(probe_gene_map.head())
print("\nGene expression dataframe shape:", gene_data.shape)
print("\nFirst few rows of gene expression data:")
print(gene_data.head())
# Save the gene expression data
gene_data.to_csv(out_gene_data_file)
# Extract gene annotation data from platform table using default prefixes
gene_annotation = get_gene_annotation(soft_file_path)
# Display structure and content
print("Data shape:", gene_annotation.shape)
print("\nPreview of first few rows:")
print(gene_annotation.head(3))
# If needed, try additional filtering to ensure we get the gene mapping table
gene_annotation = gene_annotation[gene_annotation['ID'].notna()].copy()
# Verify we have proper ID column matching our expression data
print("\nFirst few IDs:")
print(gene_annotation['ID'].head())
# Check for potential gene symbol columns
potential_symbol_cols = []
for col in gene_annotation.columns:
sample_vals = gene_annotation[col].dropna().astype(str).head()
# Check if values look like gene symbols (capital letters, numbers)
if any(val.isupper() and len(val) < 10 for val in sample_vals):
potential_symbol_cols.append(col)
print(f"\nPotential gene symbol column '{col}' values:")
print(sample_vals)
# 1. Cannot proceed with gene normalization since gene mapping failed in previous steps
# This dataset may not have gene symbols in its annotation
print("WARNING: Gene symbols are unavailable in the annotation data. Proceeding with probe-level analysis.")
# Use probe IDs as features
probe_data = genetic_data
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 2. Link clinical and probe-level data
linked_data = pd.concat([selected_clinical_df, probe_data], axis=0).T
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Gene expression data from synovial fibroblasts, comparing osteoarthritis (OA) vs rheumatoid arthritis (RA). Analysis uses probe IDs since gene symbol mapping was unavailable."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
# Save probe-level data
linked_data.to_csv(out_data_file)
# Also save probe expression data separately
probe_data.to_csv(out_gene_data_file)