|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Osteoporosis" |
|
cohort = "GSE152073" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Osteoporosis" |
|
in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE152073" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Osteoporosis/GSE152073.csv" |
|
out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE152073.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE152073.csv" |
|
json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
for row, values in unique_values_dict.items(): |
|
print(f"\n{row}:") |
|
print(values) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 0 |
|
age_row = 1 |
|
gender_row = 0 |
|
|
|
|
|
def convert_trait(x): |
|
|
|
return 1 |
|
|
|
def convert_age(x): |
|
try: |
|
|
|
age = int(x.split(': ')[1]) |
|
return age |
|
except: |
|
return None |
|
|
|
def convert_gender(x): |
|
try: |
|
gender = x.split(': ')[1].lower() |
|
if gender == 'female': |
|
return 0 |
|
elif gender == 'male': |
|
return 1 |
|
return None |
|
except: |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_features = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
preview = preview_df(clinical_features) |
|
print("Preview of clinical features:") |
|
print(preview) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
def get_genetic_data_modified(file_path: str, marker: str = "!series_matrix_table_begin") -> pd.DataFrame: |
|
with gzip.open(file_path, 'rt') as file: |
|
for i, line in enumerate(file): |
|
if marker in line: |
|
skip_rows = i + 1 |
|
break |
|
else: |
|
raise ValueError(f"Marker '{marker}' not found in the file.") |
|
|
|
genetic_data = pd.read_csv(file_path, compression='gzip', skiprows=skip_rows, comment='!', |
|
delimiter='\t', on_bad_lines='skip').T |
|
genetic_data.columns = genetic_data.iloc[0] |
|
genetic_data = genetic_data.iloc[1:] |
|
|
|
return genetic_data |
|
|
|
genetic_data = get_genetic_data_modified(matrix_file_path) |
|
|
|
|
|
print("Data structure and head:") |
|
print(genetic_data.head()) |
|
|
|
print("\nShape:", genetic_data.shape) |
|
|
|
print("\nFirst 20 column names (probe identifiers):") |
|
print(list(genetic_data.columns)[:20]) |
|
|
|
print("\nFirst 5 row names (sample IDs):") |
|
print(list(genetic_data.index)[:5]) |
|
|
|
|
|
|
|
|